偏导数就是导数。刚开始学的导数都是说,一个函数对自己的参数求导,参数唯一。当一个函数与很多参数有关,要求每个参数的变化就用到了偏导数。
而偏微分是各个偏导数对本函数的贡献式子。你只记住一点,求偏导就是将其他的参数看成常数对待。而偏微分,举个例子就知道了:df=1dx+2dy+3dz.意义是1,2,3分别代表对x,y,z的偏导。f(x,y,z)是所求函数。
扩展资料:
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
参考资料:百度百科-偏导数 百度百科-偏微分方程
2024-04-02 广告
偏导数
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或。函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。
偏微分、
(∂f/∂x)dx 是偏微分,意思是:
由 x 的无穷小变化 dx,引起的函数变化量(∂f/∂x)dx;
类似地,
由 y 的无穷小变化 dz,引起的函数变化量(∂f/∂y)dy;
由 z 的无穷小变化 dz,引起的函数变化量(∂f/∂z)dz。
.
函数的微分,是由各个变量的变化产生的综合变化:
u = f(x , y, z),
du = (∂f/∂x)dx + (∂f/∂y)dy + (∂f/∂z)dz。
推荐于2020-01-07
只对解释表达式明确描述的函数关系作微分运算
所以偏微分必须明确指定微分变量
不是指定的微分变量一律视为常量
因此偏微分都是指偏导数
偏微分运算符“э”不能像微分运算符“d”那样单独使用
不能只写“э”,必须写成“э/эx”
所以严格来说是没有偏微分的
只有偏导数
而偏导数与导数也是不同的
导数要考虑所有函数关系
偏导数只考虑显示描述的表达式
例如f(x,t)=x^2+t,x=t^3/3-2
导数:df/dt=2xt^2+1
但是偏导数:эf/эt=1
这就是偏的含义——不全
d是微分运算
э不是微分运算
只是偏导数符号
本质不一样的
可以写df=dt
不能写эf=эt
没有任何意义
而偏微分是各个偏导数对本函数的贡献式子。你只记住一点,求偏导就是将其他的参数看成常数对待。而偏微分,举个例子就知道了:df=1dx+2dy+3dz.意义是1,2,3分别代表对x,y,z的偏导。f(x,y,z)是所求函数。