lim(n->∞)[√(1+cosπ/n)+√(1+cos2π/n)+……+√(1+cosnπ/n)]*1/n=
2个回答
展开全部
lim[n→∞]
(1/n)[(1+cos(π/n))^(1/2)+...+(1+cos(nπ/n))^(1/2)]
=lim[n→∞]
(1/n)σ(1+cos(iπ/n))^(1/2)
i=1到n
=∫[0→1]
[1+cos(πx)]^(1/2)
dx
=∫[0→1]
[2cos²(πx/2)]^(1/2)
dx
=√2∫[0→1]
cos(πx/2)
dx
=(2√2/π)∫[0→1]
cos(πx/2)
d(πx/2)
=(2√2/π)sin(πx/2)
|[0→1]
=2√2/π
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
(1/n)[(1+cos(π/n))^(1/2)+...+(1+cos(nπ/n))^(1/2)]
=lim[n→∞]
(1/n)σ(1+cos(iπ/n))^(1/2)
i=1到n
=∫[0→1]
[1+cos(πx)]^(1/2)
dx
=∫[0→1]
[2cos²(πx/2)]^(1/2)
dx
=√2∫[0→1]
cos(πx/2)
dx
=(2√2/π)∫[0→1]
cos(πx/2)
d(πx/2)
=(2√2/π)sin(πx/2)
|[0→1]
=2√2/π
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |