什么是3X+1问题
3个回答
2013-09-11
展开全部
这个问题大约是在二十世纪五十年代被提出来的。在西方它常被称为西拉古斯(Syracuse)猜想,因为据说这个问题首先是在美国的西拉古斯大学被研究的;而在东方,这个问题由将它带到日本的日本数学家角谷静夫的名字命名,被称作角谷猜想。除此之外它还有着一大堆其他各种各样的名字,大概都和研究和传播它的数学家或者地点有关的:克拉兹(Collatz)问题,哈斯(Hasse)算法问题,乌拉姆(Ulam)问题等等。今天在数学文献里,大家就简单地把它称作“3x+1问题”。
角谷静夫在谈到这个猜想的历史时讲:“一个月里,耶鲁大学的所有人都着力于解决这个问题,毫无结果。同样的事情好象也在芝加哥大学发生了。有人猜想,这个问题是苏联克格勃的阴谋,目的是要阻碍美国数学的发展。”不过我对克格勃有如此远大的数学眼光表示怀疑。
这种形式如此简单,解决起来却又如此困难的问题,实在是可遇而不可求。
数学家们已经发表了不少篇严肃的关于3x+1问题的数论论文,对这个问题进行了各方面的探讨,在后面我会对这些进展作一些介绍。可是这个问题的本身始终没有被解决,我们还是不知道,“到底是不是总会得到1?”
在1996年B. Thwaites悬赏1100英镑来解决这个问题。我写一下这个悬赏的文献:Thwaites, B. “Two Conjectures, or How to win £1100.”Math.Gaz. 80, 35-36, 1996,好在大家万一证出来时知道跑哪里去领奖。看在钱大爷的份上,3x+1问题于是又多了个名字,叫Thwaites猜想。
要是真的有这么一个自然数,对它反复作上面所说的变换,而我们永远也得不到1,那只可能有两种情况。
1)它掉到另一个有别于4→2→1的循环中去了。我们在后面可以看到,要是真存在这种情况,这样一个循环中的数字,和这个循环的长度,都会是非常巨大的;2)不存在循环。也就是说,每次变换的结果都和以前所得到的所有结果不同。这样我们得到的结果就会越来越大(当然其中也有可能有暂时减小的现象,但是总趋势是所得的结果趋向无穷大)。
因为这是个形式上很简单的问题,要理解这个问题所需要的知识不超过小学三年级的水平,所以每一个数学爱好者都可以来碰碰运气,试试是不是能证明它。不过在这里我要提醒大家的是,已经有无数数学家和数学爱好者尝试过,其中不乏天才和世界上第一流的数学家,他们都没有成功。如果你在几小时内就找到了一个“证明”,那么把它一步一步地严格地写下来,看看是不是严密正确(我可以肯定它是错的,我这样的肯定要冒的危险绝不超过连续中十次彩票头奖的概率,既然我不买彩票,我就没道理不这么肯定:-))。事实上,在互联网上已经有一些错误的“证明”。据说还有个数学爱好者跑到公证处去公证他的“证明”,生怕别人把他的好主意偷跑了。
二十多年前,有人向伟大的数论学家保尔·厄尔多斯(Paul Erdos)介绍了这个问题,并且问他怎么看待现代数学对这问题无能为力的现象,厄尔多斯回答说:“数学还没有准备好来回答这样的问题。”
角谷静夫在谈到这个猜想的历史时讲:“一个月里,耶鲁大学的所有人都着力于解决这个问题,毫无结果。同样的事情好象也在芝加哥大学发生了。有人猜想,这个问题是苏联克格勃的阴谋,目的是要阻碍美国数学的发展。”不过我对克格勃有如此远大的数学眼光表示怀疑。
这种形式如此简单,解决起来却又如此困难的问题,实在是可遇而不可求。
数学家们已经发表了不少篇严肃的关于3x+1问题的数论论文,对这个问题进行了各方面的探讨,在后面我会对这些进展作一些介绍。可是这个问题的本身始终没有被解决,我们还是不知道,“到底是不是总会得到1?”
在1996年B. Thwaites悬赏1100英镑来解决这个问题。我写一下这个悬赏的文献:Thwaites, B. “Two Conjectures, or How to win £1100.”Math.Gaz. 80, 35-36, 1996,好在大家万一证出来时知道跑哪里去领奖。看在钱大爷的份上,3x+1问题于是又多了个名字,叫Thwaites猜想。
要是真的有这么一个自然数,对它反复作上面所说的变换,而我们永远也得不到1,那只可能有两种情况。
1)它掉到另一个有别于4→2→1的循环中去了。我们在后面可以看到,要是真存在这种情况,这样一个循环中的数字,和这个循环的长度,都会是非常巨大的;2)不存在循环。也就是说,每次变换的结果都和以前所得到的所有结果不同。这样我们得到的结果就会越来越大(当然其中也有可能有暂时减小的现象,但是总趋势是所得的结果趋向无穷大)。
因为这是个形式上很简单的问题,要理解这个问题所需要的知识不超过小学三年级的水平,所以每一个数学爱好者都可以来碰碰运气,试试是不是能证明它。不过在这里我要提醒大家的是,已经有无数数学家和数学爱好者尝试过,其中不乏天才和世界上第一流的数学家,他们都没有成功。如果你在几小时内就找到了一个“证明”,那么把它一步一步地严格地写下来,看看是不是严密正确(我可以肯定它是错的,我这样的肯定要冒的危险绝不超过连续中十次彩票头奖的概率,既然我不买彩票,我就没道理不这么肯定:-))。事实上,在互联网上已经有一些错误的“证明”。据说还有个数学爱好者跑到公证处去公证他的“证明”,生怕别人把他的好主意偷跑了。
二十多年前,有人向伟大的数论学家保尔·厄尔多斯(Paul Erdos)介绍了这个问题,并且问他怎么看待现代数学对这问题无能为力的现象,厄尔多斯回答说:“数学还没有准备好来回答这样的问题。”
展开全部
“3X+1”问题,便是著名的“科拉茨猜想”。1937年,德国数学家科拉茨提出:任何一个正整数X,如果X为偶数,则将其2的因子除尽;如果X为奇数,则将其乘3加1,不断重复这样的运算,经过有限步骤后,最后起始数都会变成1。
“3X+1”问题在1950年国际数学家大会公开提出,吸引包括一些顶尖数学家在内的众多数学研究者开展研究,但七十多年来,这座数学界高峰始终无人登顶。上世纪70年代,研究者在该问题上进行推广延伸,数学家克兰多尔提出,把“3X+1”中的3改成5、7等大于3的奇数,则发现一个截然相反的现象,即序列一般不会最终得到1,而是有向无穷大扩散的趋势,称之“克兰多尔猜想”。
成都数学研究者胡佐君(Hu Zuojun)近期数学论文《3X+1问题和aX+1问题的克兰多尔猜想的收敛性分析》(The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX + 1 Problem)结合结构性分析和随机性分析,综合运用数论、概率和统计、偏微分方程的能量分析等方法,在3X+1问题及其著名推广aX+1问题的克兰多尔猜想研究上取得实质性进展,已经评审后发表(百度学术和知网都可以查到)。
审稿人评价“本文对这两个问题提出了一种新颖的收敛性分析方法。相应的分析清楚解释了为什么(a = 3)导致难题,而(a > 3)导致发散级数。据我们所知,这是第一次通过创造性地应用能量收缩指数的全局期望值 E (n)来指出这些情况之间的差异。相应的结果可以为3x + 1问题的研究提供借鉴。这项研究很有意义”。
“3X+1”问题在1950年国际数学家大会公开提出,吸引包括一些顶尖数学家在内的众多数学研究者开展研究,但七十多年来,这座数学界高峰始终无人登顶。上世纪70年代,研究者在该问题上进行推广延伸,数学家克兰多尔提出,把“3X+1”中的3改成5、7等大于3的奇数,则发现一个截然相反的现象,即序列一般不会最终得到1,而是有向无穷大扩散的趋势,称之“克兰多尔猜想”。
成都数学研究者胡佐君(Hu Zuojun)近期数学论文《3X+1问题和aX+1问题的克兰多尔猜想的收敛性分析》(The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX + 1 Problem)结合结构性分析和随机性分析,综合运用数论、概率和统计、偏微分方程的能量分析等方法,在3X+1问题及其著名推广aX+1问题的克兰多尔猜想研究上取得实质性进展,已经评审后发表(百度学术和知网都可以查到)。
审稿人评价“本文对这两个问题提出了一种新颖的收敛性分析方法。相应的分析清楚解释了为什么(a = 3)导致难题,而(a > 3)导致发散级数。据我们所知,这是第一次通过创造性地应用能量收缩指数的全局期望值 E (n)来指出这些情况之间的差异。相应的结果可以为3x + 1问题的研究提供借鉴。这项研究很有意义”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2020-04-27
展开全部
科普一篇文章:
《“冰雹猜想”有规可循》
冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。
如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.
该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。
这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。别说常人,数学家几乎都不敢专职研究该问题并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。
那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe’s rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3n-1)中的数,3n-1再变为更小的3n-1并最终变为8回到1。
如11必变到26(33-1),再变为更小的8(32-1),并回到1。
《“冰雹猜想”有规可循》
冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。
如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.
该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。
这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。别说常人,数学家几乎都不敢专职研究该问题并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。
那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe’s rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3n-1)中的数,3n-1再变为更小的3n-1并最终变为8回到1。
如11必变到26(33-1),再变为更小的8(32-1),并回到1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询