已知n是正整数若一个三角形的三边长分别是n+1,n+8,3n
勾股定理的数学证明题若一个三角形的三边长分别为n+1,n+2,n+3,其中n是正整数,那么它可能是直角三角形吗?请说明理由...
勾股定理的数学证明题
若一个三角形的三边长分别为n+1,n+2,n+3,其中n是正整数,那么它可能是直角三角形吗?请说明理由 展开
若一个三角形的三边长分别为n+1,n+2,n+3,其中n是正整数,那么它可能是直角三角形吗?请说明理由 展开
3个回答
展开全部
直角三角形。
当(n+1)^2+(n+2)^=(n+3)^2时,为直角三角形
n=-2(舍去)n=2
解:(n+2)(^2)+((n+3)^2)=((n+4)^2)
解得:n=1或n=-3(舍去)
∴n=1是,这个三角形是直角三角形
关系
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有可能.
当(n+1)^2+(n+2)^=(n+3)^2时,为直角三角形
整理得:n^2-4=0
n=-2(舍去)n=2
即三边长为3,4,5,此时,三角形是直角三角形
当(n+1)^2+(n+2)^=(n+3)^2时,为直角三角形
整理得:n^2-4=0
n=-2(舍去)n=2
即三边长为3,4,5,此时,三角形是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询