一阶微分方程怎么解

 我来答
wjl371116
2020-12-28 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67430

向TA提问 私信TA
展开全部
一阶微分方程的一般形式:y'+p(x)y=q(x);
解法:积分常数变易法
先求齐次方程 y'+p(x)y=0的通解。分离变量得 dy/y=-p(x)dx;
积分之得:lny=-∫p(x)dx+lnc;故齐次方程的通解为:y=ce^(-∫p(x)dx);
将c换成x的函数u(x),得:y=ue^(-∫p(x)dx)............①;
取导数得 y'=u'e^(-∫p(x)dx-ue^(-∫p(x)dx)•p(x)............②;
将①②代入原式得:u'e^(-∫p(x)dx-ue^(-∫p(x)dx)•p(x)+p(x)ue^(-∫p(x)dx=q(x);
化简(消去同类项)得:u'e^(-∫p(x)dx=q(x);
故u'=du/dx=q(x)e^(∫p(x)dx); ∴u=∫q(x)e^[(∫p(x)dx)dx];
代入①式即得原方程的通解为: y=e^(-∫p(x)dx)•∫q(x)e^[(∫p(x)dx)]dx;
宁静致远田aa
高粉答主

2020-12-28 · 每个回答都超有意思的
知道答主
回答量:12.5万
采纳率:3%
帮助的人:6163万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式