怎么证明|arctanX-arctanY|

 我来答
慕岑华雨文
2020-02-29 · TA获得超过1092个赞
知道小有建树答主
回答量:2027
采纳率:100%
帮助的人:9.7万
展开全部
arctanx在实数范围内上连续且可导.
那么在内至少有一值c,使以下等式成立(拉格朗日中值定理)
arctanx-arctany=(arctan'c)(x-y)
arctanx-arctany=(1/(1+c²))(x-y)
(arctanx-arctany)/(x-y)=1/(1+c²)
又∵0<1/(1+c²)≤1 (c∈R)
∴0<(arctanx-arctany)/(x-y)≤1
∴|(arctanx-arctany)/(x+y)|<=1
|arctanx-arctany|<=|x-y|
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式