设a>0是常数,连续函数f(x)满足limx→正无穷f(x)=b,y
两道高数题极限和连续函数⒈设lim(x→x0):f(x)=a>0,lim(x→x0):g(x)=b,证明:lim(x→x0):f(x)^g(x)=a^b⒉设0...
两道高数题 极限和连续函数
⒈设lim(x→x0):f(x)=a>0,lim(x→x0):g(x)=b,证明:lim(x→x0):f(x)^g(x)=a^b
⒉设0 展开
⒈设lim(x→x0):f(x)=a>0,lim(x→x0):g(x)=b,证明:lim(x→x0):f(x)^g(x)=a^b
⒉设0 展开
展开全部
f(x)^g(x)=e^[g(x).lnf(x)]
lim(x→x0):f(x)^g(x)
=e^{lim(x→x0):[g(x).lnf(x)]}
=e^{[lim(x→x0):g(x)][lim(x→x0):lnf(x)]}
=e^[b.ln a]
=a^b
y'=1-acosx
因为0
lim(x→x0):f(x)^g(x)
=e^{lim(x→x0):[g(x).lnf(x)]}
=e^{[lim(x→x0):g(x)][lim(x→x0):lnf(x)]}
=e^[b.ln a]
=a^b
y'=1-acosx
因为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询