初二数学几何证明。如图 已知AD是三角形ABC的角平分线( 角ABC大于角B)

如图已知AD是三角形ABC的角平分线(角ABC大于角B)EF垂直于AD于P,交BC延长线与M。求证:角M=二分之一(角ACB-角B)... 如图 已知AD是三角形ABC的角平分线( 角ABC大于角B)EF垂直于AD于P,交BC延长线与M。求证:角M=二分之一(角ACB-角B) 展开
无所谓的文库
推荐于2016-12-02 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2178
采纳率:97%
帮助的人:905万
展开全部

【题目】

如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于M,
(1)如果∠ACB=90°,求证:∠M=∠1;
(2)求证:∠M=1/2(∠ACB-∠B)

【分析】

(1)先根据AD是△ABC的角平分线得出∠1=∠2,再由EF⊥AD于P得出∠1+∠AEP=90°,∠APE=∠APF,故∠AEP=∠AFP,再根据∠AFP=∠CFM可得出∠CFM=∠AEP,再由∠ACB=90°可∠M+∠CFM=90°,通过等量代换即可得出结论;
(2)首先由三角形的内角和定理证出∠AEF=∠AFE=∠CFM,由三角形的外角性质得到∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,代入即可得出答案。

【解答】



(1)

证明:

∵AD是△ABC的角平分线
∴∠1=∠2
∵EF⊥AD于P
∴∠1+∠AEP=90°,∠APE=∠APF=90°
∴∠AEP=∠AFP
∵∠AFP=∠CFM
∴∠CFM=∠AEP
∵∠ACB=90°
∴∠M+∠CFM=90°
∴∠M+∠AEP=90°
∴∠M=∠1

(2)

证明:

∵EF⊥AD,AD平分∠BAC
∴∠1=∠2,∠APE=∠APF=90°
又∵∠AEF=180°-∠1-∠APE,∠AFE=180°-∠2-∠APF
∴∠AEF=∠AFE
∵∠CFM=∠AFE
∴∠AEF=∠AFE=∠CFM
∵∠AEF=∠B+∠M,∠MFC=∠ACB-∠M
∴∠B+∠M=∠ACB-∠M

即∠M=1/2(∠ACB-∠B)

xrh咖啡
2013-09-11
知道答主
回答量:1
采纳率:0%
帮助的人:1461
展开全部
角ABC就是角B怎么又大于角B
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式