1个回答
展开全部
机械原理转动自由度有三个(就是需要三个独立的量来描述),转动轨迹是限制在一个以质心为圆心球面上的,星球在球面的位置可以用两个角度描述:
例如:以球心建立x,y,z坐标,这两个角度就是在x,y平面内的和x的夹角,以及和z轴的夹角。因为和x的夹角取值范围在0到360度加上和z的夹角取值范围在0到180度就可以涵盖球面的任意角落。
一般在常温下,气体分子都近似看成是刚性分子,振动自由度不考虑。力学系统由一组坐标来描述。
例如:一个质点的三维空间中的运动,在笛卡尔坐标系中,由x,y,z三个坐标来描述;或者在球坐标系中,由r,θ,φ三个坐标描述。
一般N个质点组成的力学系统由3N个坐标来描述。但力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为S = 3N - m。
注意此处的气体分子自由度与在对气体分子作热力学能量分析的自由度不同,在做热力学能量分析时还应考虑气体之间的势能变化,故会多出一个自由度。
例如:以球心建立x,y,z坐标,这两个角度就是在x,y平面内的和x的夹角,以及和z轴的夹角。因为和x的夹角取值范围在0到360度加上和z的夹角取值范围在0到180度就可以涵盖球面的任意角落。
一般在常温下,气体分子都近似看成是刚性分子,振动自由度不考虑。力学系统由一组坐标来描述。
例如:一个质点的三维空间中的运动,在笛卡尔坐标系中,由x,y,z三个坐标来描述;或者在球坐标系中,由r,θ,φ三个坐标描述。
一般N个质点组成的力学系统由3N个坐标来描述。但力学系统中常常存在着各种约束,使得这3N个坐标并不都是独立的。对于N个质点组成的力学系统,若存在m个约束,则系统的自由度为S = 3N - m。
注意此处的气体分子自由度与在对气体分子作热力学能量分析的自由度不同,在做热力学能量分析时还应考虑气体之间的势能变化,故会多出一个自由度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询