复变函数的定义域是什么?
展开全部
平面上的面域,并且要使函数有定义。
0处其实就是r等于0,z=r(cosθ+isinθ)=0 是有定义的 唯一区别就是辅角无定义而已,也就是argz在0点不连续,这跟ln(z)的性质是一样的,但都不影响这些初等函数的解析性。
定义域就是把在数学上没有意义或者不可能实现的情况排除,例如最起码的就是不论如何,分母不能为0;再例如,由于复自然指数函数exp(z)的值是不可能为0的,所以作为它的反函数,指数函数Ln(z)的自变量就不可能等于0。
对数函数
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。
以上内容参考:百度百科-复变对数函数
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询