3个回答
2013-09-13
展开全部
显然这是一个0/0式的极限,采用洛必达法则
原式=lim(x→2) (3x^2+6x-12) / (3x^2-4)
=(3*4+6*2-12) / (3*4 - 4 )
=3/2
原式=lim(x→2) (3x^2+6x-12) / (3x^2-4)
=(3*4+6*2-12) / (3*4 - 4 )
=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵x³+3x²-12x+4=x³-2x²+5x²-10x-2x+4=x²(x-2)+5x(x-2)-2(x-2)=(x²+5x-2)(x-2),x³-4x=x(x+2)(x-2)
∴lim(x→2)(x³+3x²-12x+4)/(x³-4x)=lim(x→2)(x²+5x-2)/(x²+2x)=3/2=1.5
∴lim(x→2)(x³+3x²-12x+4)/(x³-4x)=lim(x→2)(x²+5x-2)/(x²+2x)=3/2=1.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=limx→2 (x-2)(x²+5x-2)/x(x+2)(x-2)
=limx→2 (x²+5x-2)/x(x+2)
=12/8
=3/2
=limx→2 (x²+5x-2)/x(x+2)
=12/8
=3/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询