3个回答
2013-09-12
展开全部
则由正弦定理,得:a=2RsinA,b=2RsinB,c=2RsinC,代入a+c=2b,得: 2RsinA+2RsinC=4RsinB,即sinA+sinC=2sinB
2sin[(A+C)/2] * cos[(A-C)/2] = 2 * 2 * sin(B/2) * cos(B/2)
sin[(п-B)/2] * cos30 = 2 * sin(B/2) * cos(B/2)
cos[B/2] * cos30 = 2 * sin(B/2) * cos(B/2)
因为0度<B/2<90度,所以cos(B/2)非零
cos30 = 2 * sin(B/2)
sin(B/2) = 根3 / 4
则cos(B/2)=√(1-sin^2(B/2)=√13/4
则sinB=2sin(B/2)cos(B/2)=√39/8
2sin[(A+C)/2] * cos[(A-C)/2] = 2 * 2 * sin(B/2) * cos(B/2)
sin[(п-B)/2] * cos30 = 2 * sin(B/2) * cos(B/2)
cos[B/2] * cos30 = 2 * sin(B/2) * cos(B/2)
因为0度<B/2<90度,所以cos(B/2)非零
cos30 = 2 * sin(B/2)
sin(B/2) = 根3 / 4
则cos(B/2)=√(1-sin^2(B/2)=√13/4
则sinB=2sin(B/2)cos(B/2)=√39/8
2013-09-12
展开全部
解:设三角形ABC的外接圆为R,则由正弦定理,得:a=2RsinA,b=2RsinB,c=2RsinC,将其代入a+c=2b,得:
2R(sinA+sinC)=2RsinB,即sinA+sinC=sinB,由和化积公式,得:
sinA+sinC=2sin[(A+C)/2]*cos[(A-C)/2]=2sinB
=2sin[(pi-B)/2]*cos[(A-C)/2]=2sinB
=2[cos(B/2)]*(cos30度)=sinB=2[sin(B/2)][cos(B/2)]…(1)
因为0度<B/2<90度,所以cos(B/2)非零
所以 2cos30度=2sin(B/2),所以sin(B/2)=根号3/2
所以B/2=arcsin(根号3/2)=60度,所以B=120度.
2R(sinA+sinC)=2RsinB,即sinA+sinC=sinB,由和化积公式,得:
sinA+sinC=2sin[(A+C)/2]*cos[(A-C)/2]=2sinB
=2sin[(pi-B)/2]*cos[(A-C)/2]=2sinB
=2[cos(B/2)]*(cos30度)=sinB=2[sin(B/2)][cos(B/2)]…(1)
因为0度<B/2<90度,所以cos(B/2)非零
所以 2cos30度=2sin(B/2),所以sin(B/2)=根号3/2
所以B/2=arcsin(根号3/2)=60度,所以B=120度.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-09-12
展开全部
解:∵a+c=2b,A-C=60°
由正弦定理:
a:b:c=sinA:sinB:sinC
=>
sinA + sinC
=2sin((A-C)/2)*cos((A+C)/2)
=cos((π-B)/2)
=sin(B/2)
=sinB
=2sin(B/2)cos(B/2)
=>
cos(B/2)=1/2
B/2=π/3
B=2π/3
=>
即 sinB=根号3/2
由正弦定理:
a:b:c=sinA:sinB:sinC
=>
sinA + sinC
=2sin((A-C)/2)*cos((A+C)/2)
=cos((π-B)/2)
=sin(B/2)
=sinB
=2sin(B/2)cos(B/2)
=>
cos(B/2)=1/2
B/2=π/3
B=2π/3
=>
即 sinB=根号3/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询