在三角形ABC中,角A,B,C所对的边分别为a,b,c,并且a²=b(b+c)。
在三角形ABC中,角A,B,C所对的边分别为a,b,c,并且a²=b(b+c)。求证:(1)A=2B(2)若a=√3b,判断三角形ABC的形状。...
在三角形ABC中,角A,B,C所对的边分别为a,b,c,并且a²=b(b+c)。
求证:(1)A=2B
(2)若a=√3b,判断三角形ABC的形状。 展开
求证:(1)A=2B
(2)若a=√3b,判断三角形ABC的形状。 展开
2个回答
展开全部
(1)根据余弦定理
cosA=(b²+c²-a²)/(2bc)
∵a²=b(b+c)=b²+bc
∴cosA=(c²-bc)/(2bc)
=(c-b)/(2b)
由正弦定理:
c=2RsinC,b=2RsinB
cosA=(sinC-sinB)/sinB
∴ 2sinBcosA=sinC-sinB
∵sinC=sin(A+B)=sinAcosBcosAsinB
∴2sinBcosA=sinAcosB+cosAsinB-sinB
∴sinAcosB-cosAsinB=sinB
∴sin(A-B)=sinB>0
易知0<B<A<π
∴0<A-B<π
∴A-B与B互补或相等
∴A-B≠π-B
只有A-B=B
∴A=2B
(2)
∵A=2B
∴sinA=sin2B=2sinBcosB
∵a=√3b,
∴sinA=√3sinB
∴2sinBcosB=√3sinB
∴cosB=√3/2
∴B=30º,A=60º,C=90º
∴三角形ABC是直角三角形
cosA=(b²+c²-a²)/(2bc)
∵a²=b(b+c)=b²+bc
∴cosA=(c²-bc)/(2bc)
=(c-b)/(2b)
由正弦定理:
c=2RsinC,b=2RsinB
cosA=(sinC-sinB)/sinB
∴ 2sinBcosA=sinC-sinB
∵sinC=sin(A+B)=sinAcosBcosAsinB
∴2sinBcosA=sinAcosB+cosAsinB-sinB
∴sinAcosB-cosAsinB=sinB
∴sin(A-B)=sinB>0
易知0<B<A<π
∴0<A-B<π
∴A-B与B互补或相等
∴A-B≠π-B
只有A-B=B
∴A=2B
(2)
∵A=2B
∴sinA=sin2B=2sinBcosB
∵a=√3b,
∴sinA=√3sinB
∴2sinBcosB=√3sinB
∴cosB=√3/2
∴B=30º,A=60º,C=90º
∴三角形ABC是直角三角形
更多追问追答
追问
第一小题的答案是什么啊???cosA等于什么啊??
追答
第一问是证明题
写的很清楚
展开全部
(1)根据余弦定理
cosA=(b²+c²-a²)/(2bc)
∵a²=b(b+c)=b²+bc
∴cosA=(c²-bc)/(2bc)
=(c-b)/(2b)
由正弦定理:
c=2RsinC,b=2RsinB
cosA=(sinC-sinB)/sinB
∴ 2sinBcosA=sinC-sinB
∵sinC=sin(A+B)=sinAcosBcosAsinB
∴2sinBcosA=sinAcosB+cosAsinB-sinB
∴sinAcosB-cosAsinB=sinB
∴sin(A-B)=sinB>0
易知0<B<A<π
∴0<A-B<π
∴A-B与B互补或相等
∴A-B≠π-B
只有A-B=B
∴A=2B
(2)
∵A=2B
∴sinA=sin2B=2sinBcosB
∵a=√3b,
∴sinA=√3sinB
∴2sinBcosB=√3sinB
∴cosB=√3/2
∴B=30º,A=60º,C=90º
∴三角形ABC是直角三角形
cosA=(b²+c²-a²)/(2bc)
∵a²=b(b+c)=b²+bc
∴cosA=(c²-bc)/(2bc)
=(c-b)/(2b)
由正弦定理:
c=2RsinC,b=2RsinB
cosA=(sinC-sinB)/sinB
∴ 2sinBcosA=sinC-sinB
∵sinC=sin(A+B)=sinAcosBcosAsinB
∴2sinBcosA=sinAcosB+cosAsinB-sinB
∴sinAcosB-cosAsinB=sinB
∴sin(A-B)=sinB>0
易知0<B<A<π
∴0<A-B<π
∴A-B与B互补或相等
∴A-B≠π-B
只有A-B=B
∴A=2B
(2)
∵A=2B
∴sinA=sin2B=2sinBcosB
∵a=√3b,
∴sinA=√3sinB
∴2sinBcosB=√3sinB
∴cosB=√3/2
∴B=30º,A=60º,C=90º
∴三角形ABC是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询