什么是平均值不等式

 我来答
shawhom
高粉答主

2021-01-02 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11725 获赞数:28028

向TA提问 私信TA
展开全部

均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式:公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

、调和平均数:Hn=n/(1/a_1+1/a_2+⋯+1/a_n )

2、几何平均数:Gn=n√(a_1 a_2…a_n )

3、算术平均数:An=(a_1+a_2+⋯+a_n)/n

4、平方平均数:Qn=√((a_1^2+a_2^2+⋯+a_n^2)/n)

5、均值定理: 如果

属于正实数那么且仅当时 等号成立。

这四种平均数满足Hn≤Gn≤An≤Qn

a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时取“=”号

均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);

(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))

则 [1]当注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D⑴≤D⑵

由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]

均值定理的证明:因为 a 〉0 , b 〉0 所以 a+b/2 - √ab = a+b-2√ab/2 = (√a-√b)^2/2 ≥ 0

即 a+b/2≥√ab. 当且仅当√a= √b ,等号成立。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式