用积分推导球的表面积有哪些方法?

 我来答
小溪趣谈电子数码
高粉答主

2021-11-01 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584799

向TA提问 私信TA
展开全部

具体如下:

若和数∑ΔAk(k=1到n)存在极限,设极限是A,则称A是曲面S的面积,即A=∫∮√(1+fx′^2(x,y)+fy′^2(x,y))dσ半经为r的球面积A。

球心在原点的球面方程是x^2+y^2+z^2=r^2第一卦限球面方程是z=√(r^2-x^2-y^2) Zx'=-x/√(r^2-x^2-y^2) ;Zy′=-y/√(r^2-x^2-y^2)。  

∴√(1+Zx'^2+Zy′^2)=r/√(r^2-x^2-y^2) A=8∫∫√(1+Zx'^2+Zy′^2)=8r∫∫dxdy/√(r^2-x^2-y^2)(设x=tsinθy=tcosθ)=8r∫(定积分0到π/2)dθ∫(定积分0到r)t/√(r^2-t^2)dt =4πr∫(定积分0到r)t/√(r^2-t^2)dt=4πr(-√(r^2-t^2))⊥0到r=4πr^2 注;√(x)表示根号x。

相关信息:

球体表面积是指球面所围成的几何体的面积,它包括球面和球面所围成的空间,球体表面积的计算公式为S=4πr²=πD²,该公式可以利用球体积求导来计算。

当λ趋于0时,记此时的半径差为dr,当r增量趋近于零时的增加体积dv。此时球的每层的厚度就薄的像个曲面一样,这部分很薄的体积除以dr就是球的表面积了。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式