2个回答
展开全部
16、解析:∵f(x)=√3sinx+cosx=2sin(x+π/6)
单调增区间为2kπ-π/2<=x+π/6<=2kπ+π/2==>2kπ-2π/3<=x<=2kπ+π/3
∵x∈[-π/2,π/2]
f(-π/2)=2sin(-π/2+π/6)=-√3
f(π/3)=2sin(π/3+π/6)=2
f(π/2)=2sin(π/2+π/6)= √3
∴f(x)值域为[-√3,2]
17、解析:∵f(x)=√3/2sin(x)cos(x)+1/2(cos(x))^2+1
=√3/4sin(2x)+1/4(cos(2x)+1)+1
=1/2sin(2x+π/6)+5/4
∴f(x)最小正周期为π
2x+π/6=2kπ+π/2==>x=kπ+π/6
∴f(x)取得最大的值时,x=kπ+π/6==>{x|x=kπ+π/6,k∈Z}
单调增区间2kπ-π/2<=2x+π/6<=2kπ+π/2==>kπ-π/3<=x<=2kπ+π/6
单调减区间2kπ+π/2<=2x+π/6<=2kπ+3π/2==>kπ+π/6<=x<=kπ+2π/3
由y=sinx图像变换成y=1/2sin(2x+π/6)+5/4图像:
1)将y=sinx图像左平移π/6个单位,得y=sin(x+π/6)图像;
2)将X坐标缩小1/2倍,得y=sin(2x+π/6)图像;
3)将Y坐标缩小1/2倍,得y=1/2sin(2x+π/6)图像;
4)将y=1/2sin(2x+π/6)图像,上移5/4个单位,得到y=1/2sin(2x+π/6)+5/4图像。
单调增区间为2kπ-π/2<=x+π/6<=2kπ+π/2==>2kπ-2π/3<=x<=2kπ+π/3
∵x∈[-π/2,π/2]
f(-π/2)=2sin(-π/2+π/6)=-√3
f(π/3)=2sin(π/3+π/6)=2
f(π/2)=2sin(π/2+π/6)= √3
∴f(x)值域为[-√3,2]
17、解析:∵f(x)=√3/2sin(x)cos(x)+1/2(cos(x))^2+1
=√3/4sin(2x)+1/4(cos(2x)+1)+1
=1/2sin(2x+π/6)+5/4
∴f(x)最小正周期为π
2x+π/6=2kπ+π/2==>x=kπ+π/6
∴f(x)取得最大的值时,x=kπ+π/6==>{x|x=kπ+π/6,k∈Z}
单调增区间2kπ-π/2<=2x+π/6<=2kπ+π/2==>kπ-π/3<=x<=2kπ+π/6
单调减区间2kπ+π/2<=2x+π/6<=2kπ+3π/2==>kπ+π/6<=x<=kπ+2π/3
由y=sinx图像变换成y=1/2sin(2x+π/6)+5/4图像:
1)将y=sinx图像左平移π/6个单位,得y=sin(x+π/6)图像;
2)将X坐标缩小1/2倍,得y=sin(2x+π/6)图像;
3)将Y坐标缩小1/2倍,得y=1/2sin(2x+π/6)图像;
4)将y=1/2sin(2x+π/6)图像,上移5/4个单位,得到y=1/2sin(2x+π/6)+5/4图像。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询