圆周率的计算公式是什么
2013-09-14
展开全部
周长C/直径d=3.14159...
黄小姐
2023-05-24 广告
2023-05-24 广告
ATAGO爱拓成立于1940年,总部位于日本东京,拥有逾80年光学测量仪器的研究开发与生产制造经验,是专业的折光仪生产企业,其主要产品为折光仪及基于折光法原理测量多种物质浓度的衍生浓度计。020-38106065。...
点击进入详情页
本回答由黄小姐提供
2013-09-14
展开全部
是3.14...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-09-14
展开全部
第一类算法:arctan 的级数展开
PI/4 = 4 arctan(1/5) - arctan(1/239) (1)
arctan(x) = x - x3/3 + x5/5 - x7/7 + .... (2)
很容易想到,要得到超高精度的 PI 值,实数在计算机中必须以数组的形式进行存取,数组的大小跟所需的有效位数成正比。在这个算法中,PI 的有效位数 n 随 (2) 的求和项数线性增加。而为计算 (2) 中的每一项,需要进行超高精度实数除以小整数(52, 2392, 2k+1)的循环,循环所需次数也跟 n 成正比。所以,这个算法总的时间复杂度为 O(n2)。
这个算法的优点是简单,而且只需要进行整数运算。下面给出我写的算 PI 程序。在程序中,我采用了一些提高速度的措施:超高精度实数以数组的形式进行存取,数组元素的类型为 64 位整数(long long),每个元素储存 12 个十进制位;对 xk (x = 1/5, 1/239) 的头部和尾部的 0 的数量进行估计,只对非 0 的部分进行计算。
pi.cpp C++ 源程序,在 Linux 下以 g++ pi.cpp -o pi -O2 编译
pi.s 在 g++ 生成的汇编程序的基础上进行修改,速度更快,在 Linux 下以 g++ pi.s -o pi 编译
另外,还有许多跟 (1) 类似的式子,但不常用。例如:
PI/4 = arctan(1/2) + arctan(1/3)
PI/4 = 8 arctan(1/10) - arctan(1/239) - 4 arctan(1/515)
第二类算法:与 1/PI 有关的级数
1/PI = (sqrt(8) / 9801) sumk=0~inf { [(4k)! (1103 + 26390k)] / [(k!)4 3964k] } (Ramanujan)
1/PI = (sqrt(10005) / 4270934400) sumk=0~inf { [(6k)! (13591409 + 545140134k)] / [(k!)3 (3k)! (-640320)3k] } (Chudnovsky)
以上两个级数(还有其它类似形式的级数,但不常用)比起 arctan 的泰勒级数要复杂得多。虽然仍然是线性收敛,总的时间复杂度也仍然是 O(n2),但它们的收敛速度相当快, (Ramanujan) 每项可以增加 8 位有效数字, (Chudnovsky) 每项可以增加 14 位。
在这个算法中,除了要进行超高精度实数(数组形式)和小整数的运算外,还有一次超高精度实数的开方和倒数的运算,这需要用到 FFT(快速傅立叶变换),在下文叙述。
第三类算法:算术几何平均值和迭代法
算术几何平均值(Arithmetic-Geometric Mean, AGM) M(a, b) 定义如下:
a0 = a, b0 = b
ak = (ak-1 + bk-1) / 2, bk = sqrt(ak-1 bk-1)
M(a, b) = limk->inf ak = limk->inf bk
然后,由椭圆积分的一系列理论(抱歉,过程我不懂)可以推导出如下公式:
a0 = 1, b0 = 1 / sqrt(2)
1/PI = { 1 - sumk=0~inf [2k (ak2 - bk2)] } / 2M(a0, b0)2 (AGM)
根据这条公式可以制定适当的迭代算法。在迭代过程中,有效位数随迭代次数按 2 的指数增加,即每迭代一次有效位数乘 2。算法中的超高精度实数的乘、除、开方等运算需要使用 FFT,在下文叙述。综合考虑 FFT 的时间复杂度,整个算法的时间复杂度约为 O(n log(n)2)。
除了 (AGM) 以外,还有其它的迭代序列,它们具有同样的时间复杂度。例如下面的这个序列将按 4 的指数收敛到 1/PI:
y0 = sqrt(2) - 1, a0 = 6 - 4 sqrt(2)
yk = [1 - sqrt(sqrt(1 - yk-14))] / [1 + sqrt(sqrt(1 - yk-14))], ak = (1 + yk)4 ak-1 - 22k+1 yk (1 + yk + yk2)
1/PI = limk->inf ak (Borwein)
FFT
如上所述,第二和第三类算法不可避免地要涉及超高精度实数(数组形式存取的多位数)的乘、除、开方等运算。多位数乘法如果按照常规方法来计算,逐位相乘然后相加,其时间复杂度将达到 O(n2)。使用 FFT 可大大减少计算量。
设有复数数组 a[k] 和 b[k] (k=0~n-1),正向和反向的离散傅立叶变换(DFT)定义如下: (i = sqrt(-1))
b = FFTforward(a) : b[k] = sumj=0~n-1 ( a[j] e-i*j*2PI*k/n ) (3)
b = FFTbackward(a) : b[k] = (1/n) sumj=0~n-1 ( a[j] ei*j*2PI*k/n ) (4)
(3) 和 (4) 中的 (1/n) 可以放在任何一个式子中,也可以拆成 (1/sqrt(n)) 同时放在两个式子中,目的是保证正向和反向傅立叶变换以后不会相差一个因子。
当 n 的所有素因子均为小整数,尤其是当 n 为 2 的整数次幂的时候,使用适当的算法经过仔细的协调,可以避免多余的计算,使离散傅立叶变换 (3) 和 (4) 减少至 O(n log(n)) 的时间复杂度,即所谓的快速傅立叶变换(FFT)。具体的细节请查阅相关书籍。下面给出我写的一段 FFT 程序,仅供参考。另外也有已经开发的 FFT 函数库,例如 FFTW ,可以直接使用。
fft.cpp FFT 的 C++ 源程序
利用 FFT,要计算 n1 位和 n2 位的两个多位数乘法,可以这样进行:开辟两个长度为 n(n>=n1+n2,取 2m 最佳) 的复数数组,将两个多位数从低位到高位分别填入,高位补 0。对两个数组分别进行正向傅立叶变换。将得到的两个变换后的数组的对应项相乘,然后进行反向傅立叶变换,最后得到一个结果数组。由于傅立叶变换是在复数域中进行的,因此还要对结果数组进行取整和进位,才能得到最终的乘积。
值得留意的是傅立叶变换的精度问题。我们知道,在计算机中实数用单精度数或双精度数表示,它们会存在一定的误差。在计算多位数乘法时,n 往往是一个很大的数字,傅立叶变换过程中需要对数组的每一项进行求和,如何保证精度带来的误差不会因为求和而超出允许的范围?我的观点是必须使用双精度实数,而且由于统计特性,精度带来的误差在求和过程中不会很大,一般不会影响计算的正确性。如果需要保证计算的正确性,我想到两种检查方法。第一种是取模验算。例如,如果乘数和被乘数对 17 的模分别是 8 和 6,那么积对 17 的模就应该是 14。第二种是检查运算结果中浮点数偏离整数的最大值。如果偏差只有比如 10-3 量级,我们可以认为这个尺度的乘法运算很安全;如果偏差达到 0.5,说明运算已经出错了;如果偏差达到 0.1 量级,那也比较危险,也许换个别的乘数和被乘数就溢出了。
多位数的倒数和开方可以通过牛顿迭代求根法转化为乘法运算。例如,要计算 x = 1/a ,根据牛顿迭代法令 f(x) = 1/x - a ,可以得到以下迭代序列:
x0 ~= 1/a
xk = xk-1 - f(xk-1)/f'(xk-1) = 2xk-1 - axk-12 (5)
要计算 x = sqrt(a) ,可以先计算 x = 1 / sqrt(a) ,令 f(x) = 1/x2 - a ,可以得到以下迭代序列:
x0 ~= 1 / sqrt(a)
xk = xk-1 - f(xk-1)/f'(xk-1) = (3/2)xk-1 - (1/2)axk-13 (6)
(5) 和 (6) 均以 2 的指数收敛到所求结果。还存在其它更复杂一些的迭代序列,它们以更高的指数收敛,在此不提。不过需要提醒的是,跟 (AGM) 不同,这里 (5) 和 (6) 中的 x0 只是 1/a 和 1 / sqrt(a) 的约值,在前几次的迭代中不必进行满 n 位数的乘法运算,因而可以减少计算量。
示例程序
作为 AGM 和 FFT 算 PI 的完整过程演示,这里是我新写的算 PI 程序。很遗憾,我的程序比网上可以找到的其它算 PI 程序慢大约 100 倍,而且消耗更多的内存。:-( 目前还不清楚它的瓶颈所在。不管怎么说,它总算是我的第一个 AGM 和 FFT 算 PI 程序,祝贺!:-)
faint-pi-1.0.3.tar.gz C 源程序,在 Linux 下以 gcc -std=c99 *.c -o pi -lm -O3 编译
综述
以上介绍了三类算 PI 的算法。第一类算法的速度最慢,基本上已经过时。后两类算法的速度目前相差不大,最为常用。迭代法虽然在时间复杂度上有理论上的优势,但实现起来较为复杂,实际上也并不见得比 1/PI 级数法快。
PI/4 = 4 arctan(1/5) - arctan(1/239) (1)
arctan(x) = x - x3/3 + x5/5 - x7/7 + .... (2)
很容易想到,要得到超高精度的 PI 值,实数在计算机中必须以数组的形式进行存取,数组的大小跟所需的有效位数成正比。在这个算法中,PI 的有效位数 n 随 (2) 的求和项数线性增加。而为计算 (2) 中的每一项,需要进行超高精度实数除以小整数(52, 2392, 2k+1)的循环,循环所需次数也跟 n 成正比。所以,这个算法总的时间复杂度为 O(n2)。
这个算法的优点是简单,而且只需要进行整数运算。下面给出我写的算 PI 程序。在程序中,我采用了一些提高速度的措施:超高精度实数以数组的形式进行存取,数组元素的类型为 64 位整数(long long),每个元素储存 12 个十进制位;对 xk (x = 1/5, 1/239) 的头部和尾部的 0 的数量进行估计,只对非 0 的部分进行计算。
pi.cpp C++ 源程序,在 Linux 下以 g++ pi.cpp -o pi -O2 编译
pi.s 在 g++ 生成的汇编程序的基础上进行修改,速度更快,在 Linux 下以 g++ pi.s -o pi 编译
另外,还有许多跟 (1) 类似的式子,但不常用。例如:
PI/4 = arctan(1/2) + arctan(1/3)
PI/4 = 8 arctan(1/10) - arctan(1/239) - 4 arctan(1/515)
第二类算法:与 1/PI 有关的级数
1/PI = (sqrt(8) / 9801) sumk=0~inf { [(4k)! (1103 + 26390k)] / [(k!)4 3964k] } (Ramanujan)
1/PI = (sqrt(10005) / 4270934400) sumk=0~inf { [(6k)! (13591409 + 545140134k)] / [(k!)3 (3k)! (-640320)3k] } (Chudnovsky)
以上两个级数(还有其它类似形式的级数,但不常用)比起 arctan 的泰勒级数要复杂得多。虽然仍然是线性收敛,总的时间复杂度也仍然是 O(n2),但它们的收敛速度相当快, (Ramanujan) 每项可以增加 8 位有效数字, (Chudnovsky) 每项可以增加 14 位。
在这个算法中,除了要进行超高精度实数(数组形式)和小整数的运算外,还有一次超高精度实数的开方和倒数的运算,这需要用到 FFT(快速傅立叶变换),在下文叙述。
第三类算法:算术几何平均值和迭代法
算术几何平均值(Arithmetic-Geometric Mean, AGM) M(a, b) 定义如下:
a0 = a, b0 = b
ak = (ak-1 + bk-1) / 2, bk = sqrt(ak-1 bk-1)
M(a, b) = limk->inf ak = limk->inf bk
然后,由椭圆积分的一系列理论(抱歉,过程我不懂)可以推导出如下公式:
a0 = 1, b0 = 1 / sqrt(2)
1/PI = { 1 - sumk=0~inf [2k (ak2 - bk2)] } / 2M(a0, b0)2 (AGM)
根据这条公式可以制定适当的迭代算法。在迭代过程中,有效位数随迭代次数按 2 的指数增加,即每迭代一次有效位数乘 2。算法中的超高精度实数的乘、除、开方等运算需要使用 FFT,在下文叙述。综合考虑 FFT 的时间复杂度,整个算法的时间复杂度约为 O(n log(n)2)。
除了 (AGM) 以外,还有其它的迭代序列,它们具有同样的时间复杂度。例如下面的这个序列将按 4 的指数收敛到 1/PI:
y0 = sqrt(2) - 1, a0 = 6 - 4 sqrt(2)
yk = [1 - sqrt(sqrt(1 - yk-14))] / [1 + sqrt(sqrt(1 - yk-14))], ak = (1 + yk)4 ak-1 - 22k+1 yk (1 + yk + yk2)
1/PI = limk->inf ak (Borwein)
FFT
如上所述,第二和第三类算法不可避免地要涉及超高精度实数(数组形式存取的多位数)的乘、除、开方等运算。多位数乘法如果按照常规方法来计算,逐位相乘然后相加,其时间复杂度将达到 O(n2)。使用 FFT 可大大减少计算量。
设有复数数组 a[k] 和 b[k] (k=0~n-1),正向和反向的离散傅立叶变换(DFT)定义如下: (i = sqrt(-1))
b = FFTforward(a) : b[k] = sumj=0~n-1 ( a[j] e-i*j*2PI*k/n ) (3)
b = FFTbackward(a) : b[k] = (1/n) sumj=0~n-1 ( a[j] ei*j*2PI*k/n ) (4)
(3) 和 (4) 中的 (1/n) 可以放在任何一个式子中,也可以拆成 (1/sqrt(n)) 同时放在两个式子中,目的是保证正向和反向傅立叶变换以后不会相差一个因子。
当 n 的所有素因子均为小整数,尤其是当 n 为 2 的整数次幂的时候,使用适当的算法经过仔细的协调,可以避免多余的计算,使离散傅立叶变换 (3) 和 (4) 减少至 O(n log(n)) 的时间复杂度,即所谓的快速傅立叶变换(FFT)。具体的细节请查阅相关书籍。下面给出我写的一段 FFT 程序,仅供参考。另外也有已经开发的 FFT 函数库,例如 FFTW ,可以直接使用。
fft.cpp FFT 的 C++ 源程序
利用 FFT,要计算 n1 位和 n2 位的两个多位数乘法,可以这样进行:开辟两个长度为 n(n>=n1+n2,取 2m 最佳) 的复数数组,将两个多位数从低位到高位分别填入,高位补 0。对两个数组分别进行正向傅立叶变换。将得到的两个变换后的数组的对应项相乘,然后进行反向傅立叶变换,最后得到一个结果数组。由于傅立叶变换是在复数域中进行的,因此还要对结果数组进行取整和进位,才能得到最终的乘积。
值得留意的是傅立叶变换的精度问题。我们知道,在计算机中实数用单精度数或双精度数表示,它们会存在一定的误差。在计算多位数乘法时,n 往往是一个很大的数字,傅立叶变换过程中需要对数组的每一项进行求和,如何保证精度带来的误差不会因为求和而超出允许的范围?我的观点是必须使用双精度实数,而且由于统计特性,精度带来的误差在求和过程中不会很大,一般不会影响计算的正确性。如果需要保证计算的正确性,我想到两种检查方法。第一种是取模验算。例如,如果乘数和被乘数对 17 的模分别是 8 和 6,那么积对 17 的模就应该是 14。第二种是检查运算结果中浮点数偏离整数的最大值。如果偏差只有比如 10-3 量级,我们可以认为这个尺度的乘法运算很安全;如果偏差达到 0.5,说明运算已经出错了;如果偏差达到 0.1 量级,那也比较危险,也许换个别的乘数和被乘数就溢出了。
多位数的倒数和开方可以通过牛顿迭代求根法转化为乘法运算。例如,要计算 x = 1/a ,根据牛顿迭代法令 f(x) = 1/x - a ,可以得到以下迭代序列:
x0 ~= 1/a
xk = xk-1 - f(xk-1)/f'(xk-1) = 2xk-1 - axk-12 (5)
要计算 x = sqrt(a) ,可以先计算 x = 1 / sqrt(a) ,令 f(x) = 1/x2 - a ,可以得到以下迭代序列:
x0 ~= 1 / sqrt(a)
xk = xk-1 - f(xk-1)/f'(xk-1) = (3/2)xk-1 - (1/2)axk-13 (6)
(5) 和 (6) 均以 2 的指数收敛到所求结果。还存在其它更复杂一些的迭代序列,它们以更高的指数收敛,在此不提。不过需要提醒的是,跟 (AGM) 不同,这里 (5) 和 (6) 中的 x0 只是 1/a 和 1 / sqrt(a) 的约值,在前几次的迭代中不必进行满 n 位数的乘法运算,因而可以减少计算量。
示例程序
作为 AGM 和 FFT 算 PI 的完整过程演示,这里是我新写的算 PI 程序。很遗憾,我的程序比网上可以找到的其它算 PI 程序慢大约 100 倍,而且消耗更多的内存。:-( 目前还不清楚它的瓶颈所在。不管怎么说,它总算是我的第一个 AGM 和 FFT 算 PI 程序,祝贺!:-)
faint-pi-1.0.3.tar.gz C 源程序,在 Linux 下以 gcc -std=c99 *.c -o pi -lm -O3 编译
综述
以上介绍了三类算 PI 的算法。第一类算法的速度最慢,基本上已经过时。后两类算法的速度目前相差不大,最为常用。迭代法虽然在时间复杂度上有理论上的优势,但实现起来较为复杂,实际上也并不见得比 1/PI 级数法快。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询