【初二数学】关于十字相乘法:ax平方+bx+c结果为(a1x+C1)(a2x+C2)有什么更易懂的解释、?

要听得懂得...额.... 要听得懂得...额 . 展开
匿名用户
2013-09-15
展开全部
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1�6�1a2,把常数项c分解成两个因数c1,c2的积c1�6�1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x²+(p+q)x+pq=(x+p)(x+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解.
  上式的常数12可以分解为3*4,而3+4又恰好等于一次项的系数7,所以
  上式可以分解为:x^2+7x+12=(x+3)(x+4)
  又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).就这么简单.  例题
  例1 把2x^2-7x+3分解因式.
  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
  分解二次项系数(只取正因数):
  2=1×2=2×1;
  分解常数项:
  3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
  用画十字交叉线方法表示下列四种情况:
  1 1
  ╳
  2 3
  1×3+2×1
  =5
  1 3
  ╳
  2 1
  1×1+2×3
  =7
  1 -1
  ╳
  2 -3
  1×(-3)+2×(-1)
  =-5
  1 -3
  ╳
  2 -1
  1×(-1)+2×(-3)
  =-7
  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
  解 2x^2-7x+3=(x-3)(2x-1).
  一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
  a1 c1
  � ╳
  a2 c2
  a1c2+a2c1
  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
  ax2+bx+c=(a1x+c1)(a2x+c2).
  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
  例2 把6x^2-7x-5分解因式.
  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
  2 1
  ╳
  3 -5
  2×(-5)+3×1=-7
  是正确的,因此原多项式可以用十字相乘法分解因式.
  解 6x^2-7x-5=(2x+1)(3x-5)
  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
  1 -3
  ╳
  1 5
  1×5+1×(-3)=2
  所以x^2+2x-15=(x-3)(x+5).
  例3 把5x^2+6xy-8y^2分解因式.
  分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
  1 2
  �╳
  5 -4
  1×(-4)+5×2=6
  解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
  指出:原式分解为两个关于x,y的一次式.
  例4 把(x-y)(2x-2y-3)-2分解因式.
  分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
  问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
  答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
  解 (x-y)(2x-2y-3)-2
  =(x-y)[2(x-y)-3]-2
  =2(x-y) ^2-3(x-y)-2
  =[(x-y)-2][2(x-y)+1]
  =(x-y-2)(2x-2y+1).
  1 -2
  ╳
  2 1
  1×1+2×(-2)=-3
  指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
  例5 x^2+2x-15
  分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
  (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
  =(x-3)(x+5)
  总结:①x^2+(p+q)x+pq型的式子的因式分解
  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
  ②kx^2+mx+n型的式子的因式分解
  如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
  kx^2+mx+n=(ax+b)(cx+d)
  a b
  ╳
  c d
   通俗方法
  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写
  1 1
  X
  二次项系数 常数项
  若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)
  需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
  a b
  ╳
  c d
  第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
  第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
  第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
  第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
  第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
  第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
  第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
  ......
  依此类推
  直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
  例解:
  2x^2+7x+6
  第一次:
  1 1
  ╳
  2 6
  1X6+2X1=8 8>7 不成立 继续试
  第二次
  1 2
  ╳
  2 3
  1X3+2X2=7 所以 分解后为:(x+2)(2x+3) [编辑本段]⒉十字相乘法(解决两者之间的比例问题)   原理
  一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。
  AX+B(1-X)=C
  X=(C-B)/(A-B)
  1-X=(A-C)/(A-B)
  因此:X∶(1-X)=(C-B)∶(A-C)
  上面的计算过程可以抽象为:
  A ………C-B
  ……C
  B……… A-C
  这就是所谓的十字相乘法。
   十字相乘法使用时的注意
   第一点:用来解决两者之间的比例问题。
  第二点:得出的比例关系是基数的比例关系。
  第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
  
   例题
  某高校2006年度毕业学生7650名,比上年度增长2%,其中本科毕业生比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有多少人?
  十字相乘法
  解:去年毕业生一共7500人,7650÷(1+2%)=7500人。
  本科生:-2%………8%
  …………………2%
  研究生:10%……… 4%
  本科生∶研究生=8%∶4%=2∶1。
  7500×2/3=5000
  5000×0.98=4900
  这所高校今年毕业的本科生有4900人。 [编辑本段]3.十字相乘法解一元二次方程  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
  (3) 6x^2+5x-50=0 (4)x^2-2( + )x+4=0
  (1)解:(x+3)(x-6)=-8 化简整理得
  x^2-3x-10=0 (方程左边为二次三项式,右边为零)
  (x-5)(x+2)=0 (方程左边分解因式)
  ∴x-5=0或x+2=0 (转化成两个一元一次方程)
  ∴x1=5,x2=-2是原方程的解。
  (2)解:2x^2+3x=0
  x(2x+3)=0 (用提公因式法将方程左边分解因式)
  ∴x=0或2x+3=0 (转化成两个一元一次方程)
  ∴x1=0,x2=-3/2是原方程的解。
  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
  (3)解:6x^2+5x-50=0
  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
  ∴2x-5=0或3x+10=0
  ∴x1=5/2, x2=-10/3 是原方程的解。
  (4)解:x^2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
  (x-2)(x-2 )=0
  ∴x1=2 ,x2=2是原方程的解。
匿名用户
2013-09-15
展开全部
ax平方+bx+c把二次项系数a分解成两个因数a1,a2的积a1�6�1a2=a;把常数项c分解成两个因数c1,c2的积c1�6�1c2=c a1 c1
  ╳
 a2 c2
a1c2+a2c1=b (注意符号)ax平方+bx+c=(a1x+C1)(a2x+C2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-15
展开全部
把a拆成两个数,这两个数相乘等于a,把c拆成两个数,这两个数相乘等于c。将写成田字型,将对角的数相乘,得到两个数,再将这两个数相加,若能得到b,那你就成功了。得不到那就将a、c拆成另外的数再重算吧,呵呵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-15
展开全部
http://www.pkuschool.com/这上面有详细解答,O(∩_∩)O谢谢,给分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-15
展开全部
十字相乘一般用简单的数字说明就知道了。这是最容易的解释方法。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式