f(x)=4/5sin²x+3/5sin2x的最小正周期?
2个回答
展开全部
2sin²x = -(1 - 2sin²x) + 1 = 1 - cos2x
f(x) = 4/5sin²x + 3/5sin2x
= 2/5 + 3/5 sin2x - 2/5 cos2x
= 2/5 + √13 / 5 (3√13 / 13 sin2x - 2√13 / 13 cos2x)
设:cosφ = 3√13 / 13 , sinφ = 3√13 / 13
f(x) = 4/5sin²x + 3/5sin2x
= 2/5 + √13 / 5 (cosφ sin2x - sinφ cos2x)
= 2/5 + √13 / 5 sin(2x - φ)
f(x) 最小正周期:T = 2π/2 = π
f(x) = 4/5sin²x + 3/5sin2x
= 2/5 + 3/5 sin2x - 2/5 cos2x
= 2/5 + √13 / 5 (3√13 / 13 sin2x - 2√13 / 13 cos2x)
设:cosφ = 3√13 / 13 , sinφ = 3√13 / 13
f(x) = 4/5sin²x + 3/5sin2x
= 2/5 + √13 / 5 (cosφ sin2x - sinφ cos2x)
= 2/5 + √13 / 5 sin(2x - φ)
f(x) 最小正周期:T = 2π/2 = π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询