2个回答
展开全部
e^(xy)+x+y = 2, 两边对 x 求导,由复合函数求导法则,得
e^(xy)(y+xy') + 1 + y' = 0, (1)
得 y' = -[1+ye^(xy)]/[1+xe^(xy)]
式 (1) 两边再对 x 求导
e^(xy)(y+xy')^2 + e^(xy)(2y'+xy'') + y'' = 0
y'' = -e^(xy)[2y'+(y+xy')^2]/[1+xe^(xy)]
= -e^(xy)[y^2+(2+2xy)y'+x^2y'^2]/[1+xe^(xy)]
= -e^(xy){y^2-(2+2xy)[1+ye^(xy)]/[1+xe^(xy)]
+x^2[1+ye^(xy)]^2/[1+xe^(xy)]^2}/[1+xe^(xy)]
= -e^(xy){y^2[1+xe^(xy)]^2-(2+2xy)[1+ye^(xy)][1+xe^(xy)]
+x^2[1+ye^(xy)]^2}/[1+xe^(xy)]^3
e^(xy)(y+xy') + 1 + y' = 0, (1)
得 y' = -[1+ye^(xy)]/[1+xe^(xy)]
式 (1) 两边再对 x 求导
e^(xy)(y+xy')^2 + e^(xy)(2y'+xy'') + y'' = 0
y'' = -e^(xy)[2y'+(y+xy')^2]/[1+xe^(xy)]
= -e^(xy)[y^2+(2+2xy)y'+x^2y'^2]/[1+xe^(xy)]
= -e^(xy){y^2-(2+2xy)[1+ye^(xy)]/[1+xe^(xy)]
+x^2[1+ye^(xy)]^2/[1+xe^(xy)]^2}/[1+xe^(xy)]
= -e^(xy){y^2[1+xe^(xy)]^2-(2+2xy)[1+ye^(xy)][1+xe^(xy)]
+x^2[1+ye^(xy)]^2}/[1+xe^(xy)]^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询