
一元一次方程有两个相等实数根的求根公式
2个回答
展开全部
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
一元二次方程求根公式
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。
当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。
只有当>0时,一元二次方程有两个不等的实数根,才需要用到整个求根公式。这时只要把方程的三个参数代入就可以了。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0),其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程求根公式的推导过程
(1)ax2+bx+c=0(a≠0,),等式两边都除以a,得x2+bx/a+c/a=0,
(2)移项得x2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b2/4a2。
(3)配方得x2+bx/a+b2/4a2=b2/4a2-c/a,即(x+b/2a)2=(b2-4ac)/4a,
(4)开根后得x+b/2a=±[√(b2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b2-4ac)]/2a。
一元二次方程求根公式
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。
当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。
只有当>0时,一元二次方程有两个不等的实数根,才需要用到整个求根公式。这时只要把方程的三个参数代入就可以了。
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0),其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
一元二次方程求根公式的推导过程
(1)ax2+bx+c=0(a≠0,),等式两边都除以a,得x2+bx/a+c/a=0,
(2)移项得x2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b2/4a2。
(3)配方得x2+bx/a+b2/4a2=b2/4a2-c/a,即(x+b/2a)2=(b2-4ac)/4a,
(4)开根后得x+b/2a=±[√(b2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b2-4ac)]/2a。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |