你知道有关数学的小故事吗?

 我来答
和谐又淡然的小喵R
2023-03-15
知道答主
回答量:65
采纳率:100%
帮助的人:1.3万
展开全部
数学趣味小故事 1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。 4、数学家的遗嘱 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。 而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。 如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢? 5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。 规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。 规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。 通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。    趣味数学——智算酒坛 [ 2008-12-15 15:28:00 | by: 李绍刚 ] 北宋的一个夜晚,一家小酒店的老板正和伙计一起堆酒坛。因为近来生意特别好,酒坛自然也就多。老板一边在心里乐,一边盘算着如何发更大的财。他要把酒坛堆得整整齐齐,美观大方,吸引更多的顾客光临酒店。 酒坛堆得非常漂亮,一层一层整整齐齐。酒店门口的招幌迎风飘扬,使人不得不驻足逗留,忍不住想进店喝几盅。酒店老板得意扬扬之际,想数数酒坛一共有多少只。可是,数坛子也并不轻松,老板从前面绕到后面,又从后面绕到前面,刚刚擦干的汗水又冒出来了,伙计们都笑了 第二天。这堆酒坛果然吸引了不少顾客,老板望着酒坛,乐不可支。这时,一位衣冠楚楚的青年书生走了过来,面对酒坛,若有所思。老板心想:我昨天为了数清这堆酒坛,花了很大的功夫,这位青年相貌不凡,我倒要考考他看。 "年轻人,你知道这堆酒坛一共有多少个吗?"老板半开玩笑地问道。 "这很容易,只要你告诉我这堆酒坛最上面的那层一共几排,每排多少个,一共有几层。根本不用数,我马上就知道这堆酒坛的数目。"年轻人这么说话,显然有十足的把握。 "噢!"老板心想:这位年轻人真会说大话,不妨把他提的条件告诉他,看看他的能耐到底有多大。于是老板爽快地说: "最上面那层酒坛是四排,每排8个,第二层是五排,每排9个……" "好了,一共七层,"年轻人打断了老板的话,不加思索地报出了答案,"一共567个酒坛。对吗?" 老板一下子惊得连张开的嘴巴也忘记合拢了。这么快!老板马上把年轻人请进酒店,上茶,敬酒,招待得万分周到。老板真是打心眼佩服这位青年,又是请教姓名,又是讨教数坛的方法。 这位青年就叫沈括。优越的家庭生活条件使他有机会读书,加上他好奇心强,肯钻研,于是他就成了很有才学的人。沈括回答老板说:"我数这坛子的方法其实非常简单,因为最中间那层共77个,共七层,只要再乘7,最后加上常数28就行了。" 沈括从小对筹算很感兴趣,读了许多数学名著。后来自己写成了一本数学专著《隙积术》,专门研究高阶等差级数的求和问题。沈括数坛的方法就是利用了高阶等差级数求和的方法,要比单纯地数方便多了。数学上还可能碰到数字更大,项数更多的题目,用这种方法便可一下子迎刃而解。   1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道 2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑. 3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。 4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。   宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说我出一联,你们若对得上,我就让你们进考场.考官的上联是一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说在数学中,最微小的误差也不能忽略. 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从1开始的,而不是从0开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从1开始,21世纪的第一年是2001年. 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说请大家把这些小针往这张白纸上随便仍吧1客人们按他说的做了。 蒲丰的统计结果是大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。这就是著名的蒲丰试。 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为数学魔术家。 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个盛市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他你最大的愿望是什么? 他不加思索地回答工作到最后一天。他的确为科学辛劳工作的最后一天,实现了自己的诺言。   数字趣联 宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略. 二十一世纪从哪年开始? 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年. 蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。 数学魔术家 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。 工作到最后一天的华罗庚 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
社南琇云0Jk
2023-04-28 · 贡献了超过190个回答
知道答主
回答量:190
采纳率:0%
帮助的人:3.1万
展开全部
数学趣味小故事 1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。 4、数学家的遗嘱 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。 而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。 如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢? 5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。 规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。 规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。 通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。    趣味数学——智算酒坛 [ 2008-12-15 15:28:00 | by: 李绍刚 ] 北宋的一个夜晚,一家小酒店的老板正和伙计一起堆酒坛。因为近来生意特别好,酒坛自然也就多。老板一边在心里乐,一边盘算着如何发更大的财。他要把酒坛堆得整整齐齐,美观大方,吸引更多的顾客光临酒店。 酒坛堆得非常漂亮,一层一层整整齐齐。酒店门口的招幌迎风飘扬,使人不得不驻足逗留,忍不住想进店喝几盅。酒店老板得意扬扬之际,想数数酒坛一共有多少只。可是,数坛子也并不轻松,老板从前面绕到后面,又从后面绕到前面,刚刚擦干的汗水又冒出来了,伙计们都笑了 第二天。这堆酒坛果然吸引了不少顾客,老板望着酒坛,乐不可支。这时,一位衣冠楚楚的青年书生走了过来,面对酒坛,若有所思。老板心想:我昨天为了数清这堆酒坛,花了很大的功夫,这位青年相貌不凡,我倒要考考他看。 "年轻人,你知道这堆酒坛一共有多少个吗?"老板半开玩笑地问道。 "这很容易,只要你告诉我这堆酒坛最上面的那层一共几排,每排多少个,一共有几层。根本不用数,我马上就知道这堆酒坛的数目。"年轻人这么说话,显然有十足的把握。 "噢!"老板心想:这位年轻人真会说大话,不妨把他提的条件告诉他,看看他的能耐到底有多大。于是老板爽快地说: "最上面那层酒坛是四排,每排8个,第二层是五排,每排9个……" "好了,一共七层,"年轻人打断了老板的话,不加思索地报出了答案,"一共567个酒坛。对吗?" 老板一下子惊得连张开的嘴巴也忘记合拢了。这么快!老板马上把年轻人请进酒店,上茶,敬酒,招待得万分周到。老板真是打心眼佩服这位青年,又是请教姓名,又是讨教数坛的方法。 这位青年就叫沈括。优越的家庭生活条件使他有机会读书,加上他好奇心强,肯钻研,于是他就成了很有才学的人。沈括回答老板说:"我数这坛子的方法其实非常简单,因为最中间那层共77个,共七层,只要再乘7,最后加上常数28就行了。" 沈括从小对筹算很感兴趣,读了许多数学名著。后来自己写成了一本数学专著《隙积术》,专门研究高阶等差级数的求和问题。沈括数坛的方法就是利用了高阶等差级数求和的方法,要比单纯地数方便多了。数学上还可能碰到数字更大,项数更多的题目,用这种方法便可一下子迎刃而解。   1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道 2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑. 3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。 4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。   宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说我出一联,你们若对得上,我就让你们进考场.考官的上联是一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说在数学中,最微小的误差也不能忽略. 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从1开始的,而不是从0开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从1开始,21世纪的第一年是2001年. 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说请大家把这些小针往这张白纸上随便仍吧1客人们按他说的做了。 蒲丰的统计结果是大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。这就是著名的蒲丰试。 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为数学魔术家。 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个盛市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他你最大的愿望是什么? 他不加思索地回答工作到最后一天。他的确为科学辛劳工作的最后一天,实现了自己的诺言。   数字趣联 宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略. 二十一世纪从哪年开始? 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年. 蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。 数学魔术家 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。 工作到最后一天的华罗庚 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
物佑X
2023-03-24
知道答主
回答量:4
采纳率:0%
帮助的人:872
展开全部
1. 关于数学知识的小故事
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。

而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

要不要数学的童话故事?

2. 【给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
3. 求20篇数学小故事
点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略. 二十一世纪从哪年开始? 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。

而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年. 蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。

蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”

这就是著名的“蒲丰试验”。 数学魔术家 1981年的一个夏日,在印度举行了一场心算比赛。

表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。

工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。

而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。

工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。

华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。

他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”

他的确为科学辛劳工作的最后一天,实现了自己的诺言。高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+ 。

.. +97+98+99+100 = ?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。

.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子)。

为了一个国际上享有盛誉的我国数有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了。华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了。

这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅看见在国际上享有盛誉的我国现代数学家华罗庚教授。 便让他坐车(因为他们认识),终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。

华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。

这时的华罗庚才微微舒了中气,回家后,又计算起来……。
4. 数学知识,最好是小故事
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。

.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。

.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!八戒吃了几个山桃 八戒去花果山找悟空,大圣不在家。

小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3。..1 八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。

悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!” 哈哈,你知道八戒吃了几个山桃? *** 数字的由来 小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“ *** 数字”呢?于是,他就去问妈妈:“0—9既然叫‘ *** 数字’,那肯定是 *** 人发明的了,对吗妈妈?” 妈妈摇摇头说:“ *** 数字实际上是印度人发明的。

大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入 *** , *** 人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。

就这样,慢慢变成了我们今天使用的数字。因为 *** 人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘ *** 数字’。”

小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

儿歌比赛 动物学校举办儿歌比赛,大象老师做裁判。小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。

个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”

小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。

十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”

大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。

﹤、﹥和﹦的本领 很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。

数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。

9问道:“你们三个来数学王国干什么,我们不欢迎你们!” ﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”

0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。

唐僧师徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。

师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。

你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。

你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。

你算算,我们每人摘多少个?唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗。
5. 一个数学小故事
(一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。

苏联 *** 研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。

在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。

儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”

“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。

科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。

古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。

(二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。

由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。

每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。

大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。

……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。

课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

(三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。

他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。

康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。

来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。

1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。

1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。

23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。

(四)数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”

吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。

他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学。
6. 关于数学的小故事
泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.。
7. 给几个数学小故事、知识
唐僧师徒摘桃子

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?

2

数字趣联

宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.

苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.

考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.

3

点错的小数点

学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.

美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.

点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
8. 数学名人小故事
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)

后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。

家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。

老师们对他的评价是“只宜在数学的尖端领域里工作”。 3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。

父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。

在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 4.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。

瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 5.20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.6.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.与3.之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 8.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。

他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。

他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。

他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。9.高斯,德国著名数学家,并有“数学王子”的美誉。

小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。

这一年,高斯9岁。10.天才由于积累,聪明在于勤奋。

—————华罗庚华罗庚的故事1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?” “他是在哪个大学教书的?”最后还是一位江苏籍的教员慢吞吞地说:“我弟弟有个同乡叫华罗庚,他只念过初中。

熊庆来惊奇不已,将华罗庚请到清华大学来。从此,华罗庚就成为清华大学数学系助理员。

第二年,他的论文开始在国外著名的数学杂志陆续发表 。几年之后,华罗庚被保送到英国剑桥大学留学。

他提出的理论被数学界命名为“华氏定理”。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-03-23
展开全部
关于数学的一些有趣的小故事有:1、多少只袜子才能配成一对关于多少只袜子能配成对的问题,答案并非两只。为什么会这样呢?那是因为在冬季黑蒙蒙的早上,如果从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然不是太幸运,但是如果从抽屉里拿出3只袜子,肯定有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。2、燃绳计时一根绳子,从一端开始燃烧,烧完需要1小时。现在要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。3、火车相向而行问题两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。4、掷硬币并非最公平抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了另一方向,那么,你就应该选择与开始时相反的一面。5、同一天过生日的概率假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一,回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。6、唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?7、唐僧取经一天,唐僧想考考三个徒弟的数学水平,于是他把徒弟们叫到面前,说:“徒儿们,现在我在地上写3个数,你们谁能准确读出来,我就把真经传给他。”唐僧首先写出:23456。猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”唐僧又写出:130567。孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”第三个数是120034。沙和尚想了想说:“应该读作十二万零零三十四。”唐僧叹了口气,说:“如果一串数中有连续的几个零,读一个就可以了。所以这个数要读成十二万零三十四。徒儿们,你们的数学都学得不太好,还得继续努力呀,真经暂时不能传给你们呀!”
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
皮囊之下icon
2022-08-23 · TA获得超过2万个赞
知道小有建树答主
回答量:132
采纳率:92%
帮助的人:3.6万
展开全部

1、数学陈景润的小故事

数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。

2、数学家鲁道夫的小故事

16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。

3、数学家雅谷伯努利的小故事

瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。

4、古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。

5、阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式