这道题的解题过程是?已知:如图①所示,在
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证...
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.
展开
1个回答
展开全部
(1)证明:①∵∠BAC=∠DAE, ∴∠BAE=∠CAD, ∵AB=AC,AD=AE, ∴△ABE≌△ACD, ∴BE=CD. ②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD, ∵M、N分别是BE,CD的中点, ∴BM=CN. 又∵AB=AC, ∴△ABM≌△ACN. ∴AM=AN, 即△AMN为等腰三角形. (2)解:(1)中的两个结论仍然成立. (3)证明:在图②中正确画出线段PD, 由(1)同理可证△ABM≌△ACN, ∴∠CAN=∠BAM ∴∠BAC=∠MAN. 又∵∠BAC=∠DAE, ∴∠MAN=∠DAE=∠BAC. ∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形. ∴△PBD和△AMN都为顶角相等的等腰三角形, ∴∠PBD=∠AMN,∠PDB=∠ANM, ∴△PBD∽△AMN. |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询