一元三次方程的解法
展开全部
一元三次方程的公式解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。
用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
卡尔丹公式法:特殊型一元三次方程X^3+pX+q=0(p、q∈R)。
判别式Δ=(q/2)^2+(p/3)^3。
卡尔丹公式X1=(Y1)^(1/3)+(Y2)^(1/3);
X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;
X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,
其中ω=(-1+i3^(1/2))/2;
Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。
标准型一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
令X=Y—b/(3a)代入上式。
可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。
卡尔丹判别法:当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;
当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;
当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。
用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
卡尔丹公式法:特殊型一元三次方程X^3+pX+q=0(p、q∈R)。
判别式Δ=(q/2)^2+(p/3)^3。
卡尔丹公式X1=(Y1)^(1/3)+(Y2)^(1/3);
X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;
X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,
其中ω=(-1+i3^(1/2))/2;
Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。
标准型一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。
令X=Y—b/(3a)代入上式。
可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。
卡尔丹判别法:当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;
当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;
当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询