常用的参数检验和非参数检验方法

 我来答
白露饮尘霜17
2022-07-11 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6719
采纳率:100%
帮助的人:36.7万
展开全部

1.正态总体均值的假设检验(t检验)

检验1组数据样本的均值是否等于,大于或小于某个值,或者检验两组数据样本的均值的大小情况。其中的统计量Z一般服从t分布。

2.正态总体方差的假设检验

检验1组数据样本的方差是否等于,大于或小于某个值,或者检验两组数据样本的方差的大小情况。其中单样本检验的统计量X2一般服从卡方分布。双样本检测的统计量F一般服从F分布。

3.二项分布总体的假设检验(非正态总体的假设检验)

非正态总体的假设检验有很多,二项分布总体的假设检验相对较为常用。常用于随机抽样实验的成功概率的检验。

1.Neyman-Pearson χ2 拟合优度检验

检验样本数据是否符合某种分布,Neyman-Pearson拟合优度检验是非常重要的非参数检验方法,既可以用于检验数据的分布特性,又可以检验不同组数据之间的分布关系(是否是同一分布)。

2.Kolmogorov-Smirnov检验

也是一个相当重要的检验方法,和Pearson方法一样属于拟合优度检验方法。但是Kolmogorov-Smirnov方法无需对要检验的数据分组,且使用经验累积分布函数(ECDF)来定义统计量,可以用于任何分布的检验。但Kolmogorov-Smirnov只适用于一元分布的情况。因此适用面与Pearson方法相比稍小。

3.独立性检验

很重要的检验方法,具体有Pearson卡方检验,Fisher精确独立性检验。这些检验方法通常用于检验数据的分布和假设影响因素的关系。

4.符号检验和秩和检验

检验样本与总体的情况,或样本总体间的差异。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式