这道题的解题过程是?如图,在Rt△ABC中,

如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC,... 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC,试猜想线段BE和EC的数量及位置关系,并证明你的猜想。 展开
 我来答
8023110484
2013-07-31 · TA获得超过1135个赞
知道答主
回答量:1768
采纳率:0%
帮助的人:255万
展开全部
解:数量关系为:BE=EC,位置关系是:BE⊥EC;
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD=AB,
∵AC=2AB,
∴AB=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠AED=90°,
∴∠DEC+∠BED=∠AED=∠BED=90°,
∴BE⊥ED。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式