证明:实数域上一切有逆得n*n矩阵对于矩阵乘法来说,作成一个群
展开全部
我们令所有可逆n*n矩阵组成的集合为M,我们知道,M是非空的且矩阵乘法是一个二元运算.若M在矩阵乘法下成一个群,则因满足群的四个性质,现一一证明.
(1)单位矩阵I是可逆的,是M中元素,且对于任意矩阵A∈M,有IA=AI=A,即单位元素存在.
(2)对于任意一个矩阵A∈M,存在逆矩阵A^(-1),使得A*A^(-1)=I,即逆元素存在.
(3)矩阵乘法满足结合律,即对任意的矩阵A,B,C∈M,满足(A*B)*C=A*(B*C)
(4)对于任意的矩阵A,B∈M,有(A*B)*(B^(-1)*A^(-1))=A*(B*B^(-1))*A^(-1)=A*I*A^(-1)=I,即A*B是可逆的,所以有A*B∈M,即矩阵乘法元算是乘法封闭的.
总上,M在矩阵乘法下是一个群.
(1)单位矩阵I是可逆的,是M中元素,且对于任意矩阵A∈M,有IA=AI=A,即单位元素存在.
(2)对于任意一个矩阵A∈M,存在逆矩阵A^(-1),使得A*A^(-1)=I,即逆元素存在.
(3)矩阵乘法满足结合律,即对任意的矩阵A,B,C∈M,满足(A*B)*C=A*(B*C)
(4)对于任意的矩阵A,B∈M,有(A*B)*(B^(-1)*A^(-1))=A*(B*B^(-1))*A^(-1)=A*I*A^(-1)=I,即A*B是可逆的,所以有A*B∈M,即矩阵乘法元算是乘法封闭的.
总上,M在矩阵乘法下是一个群.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询