如果实数m,n满足关系式m+n=4,求m^l2+n^2的最小值.

 我来答
世纪网络17
2022-06-07 · TA获得超过5953个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
因为m+n=4
所以m=4-n
所以m^2+n^2=(4-n)^2+n^2
=2n^2-8n+16
=2(n-2)^2+8
当且仅当m=n=2时,原式最小值为8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式