如果实数m,n满足关系式m+n=4,求m^l2+n^2的最小值.
1个回答
展开全部
因为m+n=4
所以m=4-n
所以m^2+n^2=(4-n)^2+n^2
=2n^2-8n+16
=2(n-2)^2+8
当且仅当m=n=2时,原式最小值为8
所以m=4-n
所以m^2+n^2=(4-n)^2+n^2
=2n^2-8n+16
=2(n-2)^2+8
当且仅当m=n=2时,原式最小值为8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询