求证在三角形ABC中,(1)sinA=sin(B+C) (2)cosa=-cos(B+C)

 我来答
faker1718
2022-05-25 · TA获得超过972个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:51万
展开全部
证明:在△ABC中,有:A+B+C=180°
即:A=180°-B-C
所以:
sinA=sin(180°-B-C)=sin[180°- (B+C)]=sin(B+C)

cosA=cos(180°-B-C)=cos[180°- (B+C)]=-cos(B+C)
等式得证!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式