数列an的前n项和记为sn,已知a1=1,a[n+1]=n+2/n×sn,求正数列{sn/n}是等比
展开全部
a(n+1)= [(n+2)/n].Sn
S(n+1)-Sn =[(n+2)/n].Sn
nS(n+1) = 2(n+1)Sn
S(n+1)/(n+1) = 2[ Sn/n]
=>{ Sn/n} 是等比数梁念列,q=2
Sn/洞渣凯n - S1/1 = 2(n-1)
Sn/纳唤n = 2n-1
Sn = (2n-1)n
for n>=2
an = Sn -S(n-1)
=2(2n-1) -1
=4n -3
S(n+1)-Sn =[(n+2)/n].Sn
nS(n+1) = 2(n+1)Sn
S(n+1)/(n+1) = 2[ Sn/n]
=>{ Sn/n} 是等比数梁念列,q=2
Sn/洞渣凯n - S1/1 = 2(n-1)
Sn/纳唤n = 2n-1
Sn = (2n-1)n
for n>=2
an = Sn -S(n-1)
=2(2n-1) -1
=4n -3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询