高数好的来看哈 证明:当X>4时,2的X次方>X的平方.

 我来答
大沈他次苹0B
2022-06-25 · TA获得超过7350个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
证明:设f(x)=ln(2^x)-ln(x^2)=xln2-2lnx,故f(4)=0,由条件,得:f′(x)= ln2-2/x=2(ln2)/2-2/x=(ln4)/2-2/x 又∵已知x>4 ∴f′(x)= (ln4)/2-2/x > (lne)/2-2/4 =0 因此,当x>4时,f′(x)>0,所以f(x)在(4,+∞)单调递增...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式