不定积分求解后面一定要加C么
2个回答
展开全部
因为常数的求导是0。最简单的例子x+a和x+b的导数都是1,其中a和b为不相等的任意两个常数。在不定积分后,我们得到的是x+c,c为任意常数,这个常数也就涵盖了之前可能出现的a和b。
举个例子:∫1/x dx,无法求出从0开始的定积分,但我们可以求出1到2的定积分。0到2和0到1的定积分都是一个我们不知道的确定的值,因此我们在ln(x+1)后再加上一个C,无论C为何值,在求定积分的时候都可以抵消,这样就达到了求没有不定积分的定积分的目的。
解释
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询