求二阶常系数线性非齐次微分方程y''-y=x^2的通解,

 我来答
京斯年0GZ
2022-06-04 · TA获得超过6207个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.3万
展开全部
性非齐次微分方程的通解=对应齐次微分方程的通解+特解
求解过程大致分以下两步进行:
1、求对应齐次微分方程y''-y=0...(1)的通解,方程(1)的特征方程为r^2-1=0,则r=1,-1 从而方程(1)的通解就是y=ce^x+de^(-x),c、d为待求量,这里还需用到两个边界条件,不知有没有,就是f(0)=a,f‘(0)=b,a、b均为已知,用于带入通解以确定待求量c、d,否则就无法求了.
2、假设第一步中所需条件已知,现在就可以求特解了,构造一个带参数的特解(待定系数法),带入原方程,根据同类项对比就能解出系数,这里就构造如下待定特y=a0+a1*x+a2*x^2,带入原方程,可解得a0,a1,a2,这样就求出了特解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式