圆周率到底怎么算出来的呢?
3个回答
展开全部
圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。
1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如0.9的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。
2、阿基米德是最早得出圆周率大约等于3.14的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。
3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
展开全部
圆的周长计算公式:C=2πr。
圆中接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象,即:n趋近于无穷,C=n×an。
扩展资料
圆周率——
数学家们就想办法算出这个π的具体值,数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
然而必须看到,它很大程度上只是计算圆周率的方法,而圆周长是C = π * d似乎已经是事实了,这一方法仅仅是定出π的值来。仔细想想就知道这样做有问题,因为他们并没有从逻辑上证明圆的周长确实正比于直径,更进一步说他们甚至对周长的概念也仅是直观上的、非理性的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据七个大小相同的“点”构成一个圆(一个点为圆心其余六个点围绕一周旋转排列相切就显示出直径上排列的是由三个点)。由于周长上的六个有限数量的点与直径上的三个有限数量的点之比是6比3,为此圆周长上的点径与直径上的点径也是6比3(此时它还不属于圆的周长与直径的比)。
因为“点”在以直线排列不存在重叠(如:直径是3个点,直径的长度就是3 个点径之和);而“点”在以折线和曲线排列就会存在重叠了(如:因为折线一周的任一个矩形周长都会存在四个重叠点,所以矩形的周长等于矩形外围点的点径加上重叠的点径之和;因为曲线一周的任一个圆周长都会存在2√3个重叠点,所以圆的周长等于圆外围点的点径6再加上重叠的点径2√3之和)。
也就是“圆的周长与直径的比是6+2√3比3”,为此圆周率根据这个比计算得出3分之6+2√3。
因为“点”在以直线排列不存在重叠(如:直径是3个点,直径的长度就是3 个点径之和);而“点”在以折线和曲线排列就会存在重叠了(如:因为折线一周的任一个矩形周长都会存在四个重叠点,所以矩形的周长等于矩形外围点的点径加上重叠的点径之和;因为曲线一周的任一个圆周长都会存在2√3个重叠点,所以圆的周长等于圆外围点的点径6再加上重叠的点径2√3之和)。
也就是“圆的周长与直径的比是6+2√3比3”,为此圆周率根据这个比计算得出3分之6+2√3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询