九年级数学知识点归纳总结

 我来答
少盐刮油c0
2022-07-20 · TA获得超过5520个赞
知道大有可为答主
回答量:5533
采纳率:100%
帮助的人:279万
展开全部

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。

初三第一学期数学知识点

【角的度量与分类】

角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。

角的分类:

(1)锐角:小于直角的角叫做锐角

(2)直角:平角的一半叫做直角

(3)钝角:大于直角而小于平角的角

(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。

(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°

【锐角三角函数定义】

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα。

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

初三数学知识点

1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

标准差与方差

极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。

计算器——求标准差与方差的一般步骤:

1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。

2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

5.标准差的平方就是方差。

数学初三上册知识点归纳

分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

分式的乘除法法则:.

分式的乘方:.

负整指数计算法则:

(1)公式:a0=1(a≠0),a-n=(a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式:,;

(4)公式:(-1)-2=1,(-1)-3=-1.


九年级数学知识点归纳 总结 相关 文章 :

★ 初三数学知识点考点归纳总结

★ 九年级数学上册重要知识点总结

★ 初三数学知识点归纳总结

★ 九年级上册数学知识点归纳整理

★ 人教版九年级数学知识点归纳

★ 初三数学知识点归纳人教版

★ 初中九年级数学知识点总结归纳

★ 最新初三数学知识点总结大全

★ 初三中考数学知识点归纳总结

★ 九年级上册数学知识点归纳

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式