∫sin2xdx=1/2∫sin2xd(2x)=-(1/2)cos2x+c(c为任意常数)。
换元积分法是求积分的一种方法,主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不定积分。它是由链式法则和微积分基本定理推导而来的。
定义
换元积分法是求积分的一种方法,它是由链式法则和微积分基本定理推导而来的。在计算函数导数时.复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。
从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。