设a b c均为正实数,则a三次方+b三次方+c三次方+(1/abc)的最小值为多少

 我来答
机器1718
2022-06-13 · TA获得超过6837个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部
a^3+b^3+c^3+1/(abc)=a^3+b^3+c^3+3/(3abc)=a^3+b^3+c^3+1/(3abc)+1/(3abc)+1/(3abc)>=6(a^3*b^3*c^3*1/3abc*1/3abc*1/3abc)^(1/6)=6*(1/27)^(1/6)=6*根号(1/3)=2根号3取最小值的条件为a=b=c=1/(3abc)...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式