数学题。几何题
如图,在△ABC中,已知∠A=67°,∠C=36°,D,E分别是AC、BC上动点。把△CDE沿DE对折,得到△C'DE,我们对折叠后产生的夹角进行研究。(1)如图,求∠C...
如图,在△ABC中,已知∠A=67°,∠C=36°,D,E分别是AC、BC上动点。把△CDE沿DE对折,得到△C'DE,我们对折叠后产生的夹角进行研究。
(1)如图,求∠C'DA+∠C'EB
(2),如图,求∠C'DA+∠C'FA
(3)如图,求∠C'DA+∠C'EB 展开
(1)如图,求∠C'DA+∠C'EB
(2),如图,求∠C'DA+∠C'FA
(3)如图,求∠C'DA+∠C'EB 展开
2个回答
展开全部
解:
(1)
∠C'DA+∠C'EB
=(180°-∠C'DC)+(180°-∠C'EC)
=360°-(∠C'DC+∠C'EC)
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=360°-2*(180°-36°)
=72°
(2)
∠C'DA+∠C'FA
=(∠C'DC(钝角)-180°)+∠EFB
=(2∠CDE-180°)+(∠C'EC-∠B) (外角定理)
=2∠CDE-180°+2∠CED-(180°-∠A-∠C)
=2(∠CDE+CED)-180°-180°+∠A+∠C
=2(180°-∠C)-360°+∠A+∠C
=∠A-∠C
=31°
(3)
∠C'DA+∠C'EB
=(∠C'DC-180°)+180°-∠C'EC
=(2∠CDE-180°)+180°-2∠CED
=2(∠CDE-∠CED)
(不是定值,随着D,E的移动而发生改变)
(1)
∠C'DA+∠C'EB
=(180°-∠C'DC)+(180°-∠C'EC)
=360°-(∠C'DC+∠C'EC)
=360°-2(∠CDE+∠CED)
=360°-2(180°-∠C)
=360°-2*(180°-36°)
=72°
(2)
∠C'DA+∠C'FA
=(∠C'DC(钝角)-180°)+∠EFB
=(2∠CDE-180°)+(∠C'EC-∠B) (外角定理)
=2∠CDE-180°+2∠CED-(180°-∠A-∠C)
=2(∠CDE+CED)-180°-180°+∠A+∠C
=2(180°-∠C)-360°+∠A+∠C
=∠A-∠C
=31°
(3)
∠C'DA+∠C'EB
=(∠C'DC-180°)+180°-∠C'EC
=(2∠CDE-180°)+180°-2∠CED
=2(∠CDE-∠CED)
(不是定值,随着D,E的移动而发生改变)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询