已知,如图,AB=AC,∠BAC=90°,BD为∠ABC的平分线,CE⊥BE.求证:BD=2CE

 我来答
大仙1718
2022-09-09 · TA获得超过1284个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:63万
展开全部
证明:延长CE交BA的延长线于点F
∵∠BAC=90
∴∠CAF=∠BAC=90,∠ABD+∠ADB=90
∵∠ADB=∠CDE
∴∠ABD+∠CDE=90
∵CE⊥BE
∴∠ACF+∠CDE=90,∠BEF=∠BEC=90
∴∠ACF=∠ABD
∵AB=AC
∴△ABD≌△ACF (ASA)
∴BD=CF
∵BD平分∠ABC
∴∠ABD=∠CBD
∵BE=BE
∴△CBE≌△FBE (ASA)
∴CE=FE=CF/2
∴CE=BD/2
∴BD=2CE
数学辅导团解答了你的提问,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式