∫dx/(x^8+x^4+1) 求积分.

 我来答
科创17
2022-09-08 · TA获得超过5900个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
∫dx/(x^4+1)=∫dx/[(x^2+1)^2-2x^2]
=∫dx/[(x^2+1-√2x)(x^2+1+√2x)]
=∫(1/2√2x)[ (x^2+1+√2x)-(x^2+1-√2x)]dx/[(x^2+1+√2x)(x^2+1-√2x)]
=∫(1/(2√2x))dx/(x^2+1-√2x) - ∫(1/(2√2x))dx/(x^2+1+√2x)
=(1/(2√2))[∫(1/2)d(x^2+1-√2x)/(x^2+1-√2x) +∫(1/2)*√2dx/(x^2+1-√2x)
-∫(1/2)d(x^2+1+√2x)/(x^2+1+√2x)+∫(1/2)*√2dx/(x^2+1+√2x)]
=(1/(2√2))*[(1/2)(ln|(x^2+1-√2x)|-ln|(x^2+1+√2x)|)
+(1/4)∫dx/[(x-√2/2)^2+1/2] +(1/4)∫dx/[(x+√2/2)^2+1/2]]
=(√2/4)[(1/2)(ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)
+(√2/4)arctan(√2x-1)
+(√2/4)arctan(√2x+1)]+C
=(√2/8)[ln|(x^2+1-√2x)| -ln|(x^2+1+√2x)|)]
+(1/8)arctan(√2x-1)
+(1/8)arctan(√2x+1)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式