不定积分换元法公式

 我来答
存在棱光
2022-12-15 · 超过14用户采纳过TA的回答
知道答主
回答量:288
采纳率:100%
帮助的人:4.1万
展开全部

换元积分法可分为第一类换元法与第二类换元法。第一类换元法也叫凑微分法,通过凑微分,最后依托于某个积分公式,进而求得原不定积分。第二类换元法的变换式必须可逆,并且Φ(x)在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种: 根式代换法,三角代换法。

两种换元法例题

第一类换元积分法

原式=∫(x-1+1)/根号下(x-1)dx

=∫[根号下(x-1)+1/根号下(x-1)]d(x-1)

=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。

第二类换元积分法

令t=根号下(x-1),则x=t^2+1,dx=2tdt

原式=∫(t^2+1)/t*2tdt

=2∫(t^2+1)dt

=(2/3)*t^3+2t+C

=(2/3)*(x-1)^(3/2)+2根号下(x-1)+C,其中C是任意常数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式