复合函数的求导
展开全部
复合函数求导公式:
①设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x),设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x)。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u。
有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
注意事项:
1、若x处于分母位置,则分母x不能为0。
2、偶次方根的被开方数不小于0。
3、对数式的真数必须大于0。
4、指数对数式的底,不得为1,且必须大于0。
5、指数为0时,底数不得为0。
6、如果函数是由一些基本函数通过四则运算结合而成的,那么定义域是各个部分都有意义的x值组成的集合。
7、实际问题中的函数的定义域还要保证实际问题有意义。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询