求函数值域方法
求函数值域方法有:
1,配方法(二次函数或二次形式的函数求值域的典型方法)
2,换元法(比如三角换元,整体代换)
3,判别式法
4,利用函数单调性(闭区间上连续函数有最大,最小值)
5,数形结合的方法(利用问题的几何意义,将代数问题转化为几何问题)
6,求导数的方法(似乎所有的给定解析式求最值都可以用求导数的方法,但有些初等问题用导数求解相当啰嗦)
7,反解法(利用函数和它的反函数的定义域和值域的互逆关系,通过恒等变形,求原函数的值域)
8,其它特殊方法
求函数值域的常用方法有:化归法、复合函数法、判别式法、图像法、分离常数法、反函数法、换元法、不等式法、单调性法。在函数中,因变量的变化而变化的取值范围叫做这个函数的值域。
求值域的方法
化归法:
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
图像法:根据函数图像,观察最高点和最低点的纵坐标。
配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
广告 您可能关注的内容 |