一阶线性微分方程求解

 我来答
谨记小柒6A
2022-12-14 · TA获得超过716个赞
知道大有可为答主
回答量:1.2万
采纳率:100%
帮助的人:166万
展开全部

一阶线性微分方程解题步骤如下:

形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。形如(记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。

这里假设,是x的连续函数。若,式1变为(记为式2)称为一阶齐次线性方程。如果不恒为0,式1称为一阶非齐次线性方程,式2也称为对应于式1的齐次线性方程。式2是变量分离方程,它的通解为,这里C是任意常数。

一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。一阶齐次线性微分方程对于一阶齐次线性微分方程:其通解形式为:其中C为常数,由函数的初始条件决定。一阶非齐次线性微分方程对于一阶非齐次线性微分方程:

其对应齐次方程:解为:令C=u(x),得:带入原方程得:对u’(x)积分得u(x)并带入得其通解形式为:其中C为常数,由函数的初始条件决定。

注意到,上式右端第一项是对应的齐次线性方程式(式2)的通解,第二项是非齐次线性方程式(式1)的一个特解。由此可知,一阶非齐次线性方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式