三棱锥三视图画法
三棱锥三视图画法:
1.确定主视图的方向。
2.布置视图 。
3.先画出能反映物体真实形状的一个视图(一般为主视图)。
4.运用长对正、高平齐、宽相等原则。
三棱锥,是锥体的一种,几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。
几何体,锥体的一种,由四个三角形组成,亦称为四面体,它的四个面(一个叫底面,其余叫侧面)都是三角形。
平面上的多边形至少三条边,空间的几何体至少四个面,所以四面体是空间最简单的几何体。四面体又称三棱锥。三棱锥有六条棱长,四个顶点,四个面。
底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥称作正三棱锥;而由四个全等的正三角形组成的四面体称为正四面体。
三棱锥是一种简单多面体。指空间两两相交且不共线的四个平面在空间割出的封闭多面体。它有四个面、四个顶点、六条棱、四个三面角、六个二面角与十二个面角。若四个顶点为A,B,C,D.则可记为四面体ABCD,当看做以A为顶点的三棱锥时,也可记为三棱锥A-BCD。
四面体的每个顶点都有惟一的不通过它的面,称为该顶点的对面,原顶点称这个面的对顶点。在四面体的六条棱中,没有公共端点的两条称为对棱。
四面体有三双对棱。且对棱的中点连结的线段(三条)彼此平分于同一点即四面体的重心,亦称四面体的形心。四面体的四个顶点与所对面(三角形)的重心连线(四条线段)必相交于同一点,即四面体的重心。
若在四面体的四个顶点处各置重量相同的质心,则这个质点系的质心就在该四面体的重心处。或者当四面体由均匀物质构成时,它的质心就在四面体的重心处.四面体的重心平分四面体的每一双对棱中点连线。
连结四面体的顶点与所对面的重心的线段,被四面体的重心内分为3∶1(从顶点量起)。过四面体的每双对棱作一对平行平面,这三对平行平面围成一个平行六面体,即为原四面体的外接平行六面体,
四面体的棱都是其外接平行六面体的面(平行四边形)上的对角线.四面体的重心平分其外接平行六面体的每一条对角线.除重心性质外,四面体还有如下的性质:
2024-07-18 广告