一、互联网业务风控
维护账户安全的手段主要有网络层防护、数据层防护以及业务层防护。 相应的手段不局限于WAF、设备指纹、验证码、生物探针、数字证书、安全SDK。 这些防护手段从技术原理上可以总结为加密/解密、人机识别两大类。
电商平台最核心的业务就是交易,而交易又衍生出其他业务。商家为了达到提升排名、引流、商品冷启动、增加商品评论数等目的,会通过多种渠道来做虚假交易。典型的虚假交易是指通过虚构交易流程、伪造物流、资金流信息等手段,提到 DSR (Detail Seller Rateing,即商铺信用、商品销量和店铺动态评分)分数,实现提升店铺和商品排名的目的。
刷单主体:商家、刷手、刷单中介和上下游利益团体(泛指卡商、账号批发商、物流)。
互联网平台对流量监控在大多数情况下,宁可放宽监管力度,也不允许有太多的错杀的情况。
从作案规模上,信贷欺诈一般可分为个人欺诈和团队欺诈。从风险归因上,可分为以下类别:
A. 白户风险 :借款人信息缺失,没有足够的数据来对借款人进行风险评估。包括内部白户(新注册用户、无申贷 历史 记录)和外部白户(央行征信、第三方民间征信无覆盖)。由于从未或较少有申贷记录,因此黑名单规则、多头规则等都会失效。在对待白户时,应当谨慎其被黑产利用的可能。
B. 黑户风险 :借款人存在逾期、失信、欺诈的记录。包括内部黑户( 历史 多笔订单出现逾期、在途订单催收失联等)、外部黑户(央行征信花/黑、第三方民间征信黑)。出于炫耀等心理,很多黑户会在口子论坛、QQ群等交流撸贷经验,因此可通过论坛舆情监控、黑产群卧底等来发现新的作案手法。
C. 恶意欺诈 :借款人通过伪造资料,蓄意骗贷。例如,伪造账单流水记录来企图骗取更高的额度。一般都是借款老哥,熟悉各平台流程,深谙套路。恶意欺诈人群往往到处借钱,广撒网来提高放款概率。同时,可能涉及不良嗜好(黄赌毒)。
D. 身份冒用 :伪冒他人身份进行欺诈骗贷。包括熟人冒用(亲戚朋友、同学等)和他人盗用(购买他人四件套、个人隐私信息泄漏等)。一般可通过信审、人脸识别、活体验证等方式来核验借款人身份。
E. 以贷养贷 :通过拆东墙补西墙的方式,来维持不良消费(黄赌毒、奢侈品等)。借款人现金流收入主要靠不断借款,借下家的钱,还上家的债。这种击鼓传花的 游戏 ,会将共债风险杠杆逐渐放大。一旦借款人再也借不到钱,资金链便会立刻断裂,所有平台全线逾期。目前市场上,同盾、百融、亿美等第三方征信机构都提供此类多头借贷产品服务。
F. 中介风险 :黑中介哄骗或招揽客户实施骗贷。网贷中介有利有弊,好中介可帮助平台导流(类似贷款超市),提高市场份额;黑中介将对平台风控漏洞进行大规模攻击,造成巨大资损。黑中介可利用白户轻松突破风控防线,并骗取白户的高额手续费。黑中介通讯录一般会存客户的号码;若是远程贷款操作,可能会采取视频通话、翻拍照片来应对活体识别核身。
A. 实时大盘监控 :基于订单、用户维度,监控设备聚集性风险(LBS、Wi-Fi)、地域欺诈风险(如朋克村)。大盘监控对于识别黑中介风险、传销风险等团伙欺诈相对更有效,需要设置报警阈值,并人工介入分析。
B. 信审催收反馈 :信审通过电话外呼,核验客户身份,咨询借款动机,往往会发现某些欺诈用户。例如,身份伪冒风险场景中,借款人支支吾吾无法正确回答问题。催收中发现失联用户等,这些兄弟部门的案件将反馈至调研组。因此,需要建设好案件管理平台,联通各部门。
C. 论坛舆情监控 :通过对各大口子论坛、戒赌吧、上岸交流区等内容,提取近期市场动向。特别是需要去理解欺诈人群的心理特征、 社会 身份等。例如,2018年,在714高炮行业风险初见苗头时,论坛上就出现“青铜系”、“宁波系”等借贷口子系列。
D. 黑产卧底调研 :线上渠道可尝试加撸口子QQ群、网贷中介微信等方式,利用老哥们的集体智慧,以及网贷中介的丰富经验。站在对方的立场上,你更会发现自己风控系统的弱点。线下渠道可去一些欺诈案件多发地,实地调研来学习黑产的手法。实地调研的难度相对较高。
A.设备指纹 唯一标识出该设备的设备特征或者独特的设备标识;从技术方法上,可分为: 主动式设备指纹和被动式设备指纹。
主动式设备指纹: 一般采用JS代码或SDK,在客户端主动地收集与设备相关的信息和特征,包括:
主动式设备指纹算法一般将这些信息组合起来,通过特定的hash算法得到一个设备指纹ID值,作为该设备的唯一标识符。
被动式设备指纹: 在终端设备与服务器通信的过程中,从数据报文的协议中提取出该终端设备的OS、协议栈和网络状态相关的特征集,并结合机器学习算法来标识和跟踪具体的终端设备。
B.生物探针 采集用户使用手机时的传感器数据和屏幕轨迹数据的技术; 优点: • 无需其他硬件支持 • 用户无感知 • 行为习惯不易改变 • 可以进行连续判断 缺点: • 需要一定的算法支持
C.设备行为 APP安装列表;APP行为(包括安装、卸载、打开等);通话记录、短信等
D.WiFi列表 WiFi 名称、接入时间、接入时长等
E.LBS 设备与地理空间位置映射数据; 包括IP、基站、WiFi、身份证、手机号及银行卡等多维度的地理位置信息的信息库 用户稳定性判断登录、交易等多环节多重验证
F.运营商 特点:完整、真实; 涵盖: • 在网时长 • 通话记录、短信记录 • 网站、APP访问记录 • 位置信息
G.关联数据 前提假设:人是 社会 关系的总和、人以类聚物以群分; 应用:人的 社会 关系网反映人的特征; 目的:信息核验、度量身份和关系风险、社群团伙发现
H.多头 信贷全流程数据;涵盖注册、申请、审批、放款、还款成功、还款失败、逾期等整个信贷周期;场景贴合度高
传统反欺诈的困境
应用案例 A.app特征挖掘:
B.关联特征挖掘:
C.其他特征挖掘
2024-11-20 广告