f(x)∈[0,1],且f(0)=f(1),求证,对任意n∈N*,存在ξn)∈[0,1],使得f(ξn)=f(ξn+1/n) 我来答 1个回答 #热议# 网上掀起『练心眼子』风潮,真的能提高情商吗? 华源网络 2022-09-12 · TA获得超过5592个赞 知道小有建树答主 回答量:2486 采纳率:100% 帮助的人:146万 我也去答题访问个人页 关注 展开全部 用导数定义和罗尔定理.f(x)∈[0,1],且f(0)=f(1).根据罗尔定理有在[0,1]上必存在一点f’(ξ n )=0 根据f(ξn)=f(ξn+1/n),有f(ξn)-f(ξn+1/n)/(-1/n)=0.当n无穷大时即为导数定义.故得证.望采纳 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-10-02 设函数f(x)在[0,1]上连续,且f(0)=f(1).证明:至少存在一点§∈[0,1/2],使得f 2022-08-15 设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/3 2021-10-02 设f(x)在[0,1]上连续,且f(0)=f(1) 证明;一定存在Xo∈[0,1/2],使得f(Xo)=f(Xo+1/2) 2022-09-01 f(x)[0,1]上连续,且∫(1,0)dx=0,证至少存在一点ζ∈[0,1]使得f(1-ζ)=f(ζ) 2022-05-26 设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ 2022-06-26 f(x)在[0,1]连续,在(0,1)可导,f(0)=f(1)=0,证(0,1)存在ξ,f'(ξ)+2f(ξ)=0 2019-12-20 设函数f(x)在[0,1]上连续,且f(0)=0,f(1)=1,求证:存在一点ξ∈[0,1]使得f(ξ)=ξ 9 2021-10-02 函数f(x)在【0,1】上连续,且f(0)=f(1),求证存在ξ∈(0,1)满足:f(ξ)=f(ξ+1/4) 3 为你推荐: