如何求不定积分?

 我来答
生活达人在此
2022-10-31 · TA获得超过7917个赞
知道小有建树答主
回答量:1975
采纳率:97%
帮助的人:31.4万
展开全部

具体回答如下:

根据题意,令x=根号下2tant

t=arctan(x/根号下2)

dx=根号下2*(sect)^2 dt

根号下(2+x^2)dx

=根号下2*sect*根号下2*(sect)^2 dt

=2(sect)^3dt

=sect*tant+ln|sect+tant|+c

=x/根号下(2+x^2)+ln|1/根号下(1+1/2*x^2)+x/根号下2|+c

不定积分的性质:

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。

这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吉禄学阁

2023-05-16 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部
  • 例如计算不定积分∫x²3√1-xdx

解:原式=3∫x²√1-x

令√1-x=t

x=1-t²

dx=-2tdt

原式=3∫(1-t²)²t(-2t)dt

=3∫(-2t²+4t^4-2t^6)dt

=-6∫t²dt+12∫t^4dt-6∫t^6dt

=-2t^3+12/5t^5-6/7t^7+c

=-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。

  • 例如本题不定积分计算过程如下:

∫(1-3x)^6dx

=(-1/3)∫(1-3x)^6d(1-3x)

=-1/3*(1-3x)^7*(1/7)+C

=-1/21*(1-3x)^7+C。

  • 例如∫(sinx)^4dx

=∫[(1/2)(1-cos2x]^2dx

=(1/4)∫[1-2cos2x+(cos2x)^2]dx

=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx

=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx

=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x

=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。

  • 不定积分概念

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

不定积分的计算

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应用。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式