x,y,z大于0。x+y+z等于1。求x平方+3y平方+z平方最小值
1个回答
展开全部
这是一道经典的数学问题,可以通过代数的方法来求解。
设x+y+z=1x+y+z=1,则有:
\begin{aligned} x &= 1-y \\ y &= 1-z \end{aligned}
x
y
=1−y
=1−z
将上式代入x^2+3y^2+z^2x
2
+3y
2
+z
2
中,可以得到:
\begin{aligned} x^2+3y^2+z^2 &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y
设x+y+z=1x+y+z=1,则有:
\begin{aligned} x &= 1-y \\ y &= 1-z \end{aligned}
x
y
=1−y
=1−z
将上式代入x^2+3y^2+z^2x
2
+3y
2
+z
2
中,可以得到:
\begin{aligned} x^2+3y^2+z^2 &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y)^2 \\ &= x^2+3y^2+(1-y
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询